Ollama: Difference between revisions
Initial page |
Malteneuss (talk | contribs) m Add standalone amd override hint |
||
(17 intermediate revisions by 10 users not shown) | |||
Line 2: | Line 2: | ||
== Setup == | == Setup == | ||
You can add Ollama in two ways to your system configuration. | |||
services.ollama | |||
As a standalone package: | |||
<syntaxhighlight lang="nix"> | |||
environment.systemPackages = [ pkgs.ollama ]; | |||
</syntaxhighlight> | |||
As a systemd service: | |||
<syntaxhighlight lang="nix"> | |||
services.ollama = { | |||
enable = true; | |||
# Optional: load models on startup | |||
loadModels = [ ... ]; | |||
}; | |||
</syntaxhighlight> | |||
== Configuration of GPU acceleration == | |||
Its possible to use following values for acceleration: | |||
* false: disable GPU, only use CPU | |||
* "rocm": supported by most modern AMD GPUs | |||
* "cuda": supported by most modern NVIDIA GPUs | |||
Example: Enable GPU acceleration for Nvidia graphic cards | |||
As a standalone package: | |||
<syntaxhighlight lang="nix"> | |||
environment.systemPackages = [ | |||
(pkgs.ollama.override { | |||
acceleration = "cuda"; | |||
}) | |||
]; | |||
</syntaxhighlight> | </syntaxhighlight> | ||
As a systemd service: | |||
<syntaxhighlight lang="nix"> | |||
services.ollama = { | services.ollama = { | ||
enable = true; | enable = true; | ||
Line 14: | Line 44: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
To find out whether a model is running on CPU or GPU, you can either | |||
look at the logs of | |||
ollama | <syntaxhighlight lang="bash"> | ||
$ ollama serve | |||
</syntaxhighlight> | </syntaxhighlight> | ||
and search for "looking for compatible GPUs" and "new model will fit in available VRAM in single GPU, loading" | |||
or while a model is answering run in another terminal | |||
<syntaxhighlight lang="bash"> | |||
$ ollama ps | |||
NAME ID SIZE PROCESSOR UNTIL | |||
gemma3:4b c0494fe00251 4.7 GB 100% GPU 4 minutes from now | |||
</syntaxhighlight> | |||
In this example we see "100% GPU". | |||
== Usage via CLI == | |||
=== Download a model and run interactive prompt === | |||
Example: Download and run Mistral LLM model as an interactive prompt<syntaxhighlight lang="bash"> | |||
$ ollama run mistral | |||
</syntaxhighlight>For other models see [https://ollama.ai/library Ollama library]. | |||
=== Send a prompt to ollama === | |||
Example: To download and run codellama with 13 billion parameters in the "instruct" variant and send a prompt: | |||
<syntaxhighlight lang="bash"> | |||
$ ollama run codellama:13b-instruct "Write an extended Python program with a typical structure. It should print the numbers 1 to 10 to standard output." | |||
</syntaxhighlight> | |||
=== See usage and speed statistics === | |||
Add "--verbose" to see statistics after each prompt: | |||
<syntaxhighlight lang="bash"> | |||
$ ollama run codellama:13b-instruct --verbose "Write an extended Python program..." | |||
... | |||
total duration: 50.302071991s | |||
load duration: 50.912267ms | |||
prompt eval count: 49 token(s) | |||
prompt eval duration: 4.654s | |||
prompt eval rate: 10.53 tokens/s <- how fast it processed your input prompt | |||
eval count: 182 token(s) | |||
eval duration: 45.595s | |||
eval rate: 3.99 tokens/s <- how fast it printed a response | |||
</syntaxhighlight> | |||
== Usage via web API == | |||
Other software can use the web API (default at: http://localhost:11434 ) to query Ollama. This works well e.g. in Intellij-IDEs with the "ProxyAI" and the "Ollama Commit Summarizer" plugins. | |||
Alternatively, on enabling "open-webui", a web portal is available at: http://localhost:8080/: | |||
services.open-webui.enable = true; | |||
== Troubleshooting == | |||
=== AMD GPU with open source driver === | |||
In certain cases Ollama might not allow your system to use GPU acceleration if it cannot be sure your GPU/driver is compatible. | |||
However you can attempt to force-enable the usage of your GPU by overriding the LLVM target. <ref>https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides</ref> | |||
You can get the version for your GPU from the logs or like so: | |||
<syntaxhighlight lang="bash"> | |||
$ nix-shell -p "rocmPackages.rocminfo" --run "rocminfo" | grep "gfx" | |||
Name: gfx1031 | |||
</syntaxhighlight> | |||
In this example the LLVM target is "gfx1031", that is, version "10.3.1", you can then override that value for Ollama for the systemd service: | |||
<syntaxhighlight lang="nix"> | |||
services.ollama = { | |||
enable = true; | |||
acceleration = "rocm"; | |||
environmentVariables = { | |||
HCC_AMDGPU_TARGET = "gfx1031"; # used to be necessary, but doesn't seem to anymore | |||
}; | |||
# results in environment variable "HSA_OVERRIDE_GFX_VERSION=10.3.1" | |||
rocmOverrideGfx = "10.3.1"; | |||
}; | |||
</syntaxhighlight> | |||
or via an environment variable in front of the standalone app | |||
<syntaxhighlight lang="bash"> | |||
HSA_OVERRIDE_GFX_VERSION=10.3.1 ollama serve | |||
</syntaxhighlight> | |||
If there are still errors, you can attempt to set a similar value that is listed [https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides here]. | |||
[[Category:Server]] | |||
[[Category:Applications]] | |||
[[Category:CLI Applications]] |