Ollama: Difference between revisions

No edit summary
m Add standalone amd override hint
(11 intermediate revisions by 7 users not shown)
Line 2: Line 2:


== Setup ==
== Setup ==
Add following line to your system configuration<syntaxhighlight lang="nix">
You can add Ollama in two ways to your system configuration.
services.ollama.enable = true;
 
As a standalone package:
<syntaxhighlight lang="nix">
environment.systemPackages = [ pkgs.ollama ];
</syntaxhighlight>
</syntaxhighlight>


== Configuration ==
As a systemd service:
Enable GPU acceleration for Nvidia graphic cards<syntaxhighlight lang="nix">
<syntaxhighlight lang="nix">
services.ollama = {
  enable = true;
  # Optional: load models on startup
  loadModels = [ ... ];
};
</syntaxhighlight>
 
== Configuration of GPU acceleration ==
Its possible to use following values for acceleration:
* false: disable GPU, only use CPU
* "rocm": supported by most modern AMD GPUs
* "cuda": supported by most modern NVIDIA GPUs
 
 
Example: Enable GPU acceleration for Nvidia graphic cards
 
As a standalone package:
<syntaxhighlight lang="nix">
environment.systemPackages = [
  (pkgs.ollama.override {
      acceleration = "cuda";
    })
  ];
</syntaxhighlight>
 
As a systemd service:
<syntaxhighlight lang="nix">
services.ollama = {
services.ollama = {
   enable = true;
   enable = true;
Line 14: Line 44:
</syntaxhighlight>
</syntaxhighlight>


== Usage ==
To find out whether a model is running on CPU or GPU, you can either
Download and run Mistral LLM model as an interactive prompt<syntaxhighlight lang="bash">
look at the logs of
ollama run mistral
<syntaxhighlight lang="bash">
</syntaxhighlight>For ruther models see [https://ollama.ai/library Ollama library].
$ ollama serve
</syntaxhighlight>
and search for "looking for compatible GPUs" and "new model will fit in available VRAM in single GPU, loading"
 
or while a model is answering run in another terminal
<syntaxhighlight lang="bash">
$ ollama ps
NAME        ID              SIZE      PROCESSOR    UNTIL
gemma3:4b    c0494fe00251    4.7 GB    100% GPU    4 minutes from now
</syntaxhighlight>
In this example we see "100% GPU".
 
== Usage via CLI ==
=== Download a model and run interactive prompt ===
Example: Download and run Mistral LLM model as an interactive prompt<syntaxhighlight lang="bash">
$ ollama run mistral
</syntaxhighlight>For other models see [https://ollama.ai/library Ollama library].
 
=== Send a prompt to ollama ===
Example: To download and run codellama with 13 billion parameters in the "instruct" variant and send a prompt:
<syntaxhighlight lang="bash">
$ ollama run codellama:13b-instruct "Write an extended Python program with a typical structure. It should print the numbers 1 to 10 to standard output."
</syntaxhighlight>
 
=== See usage and speed statistics ===
Add "--verbose" to see statistics after each prompt:
<syntaxhighlight lang="bash">
$ ollama run codellama:13b-instruct --verbose "Write an extended Python program..."
...
total duration:      50.302071991s
load duration:        50.912267ms
prompt eval count:    49 token(s)
prompt eval duration: 4.654s
prompt eval rate:    10.53 tokens/s <- how fast it processed your input prompt
eval count:          182 token(s)
eval duration:        45.595s
eval rate:            3.99 tokens/s  <- how fast it printed a response
</syntaxhighlight>
 
== Usage via web API ==
Other software can use the web API (default at: http://localhost:11434 ) to query Ollama. This works well e.g. in Intellij-IDEs with the "ProxyAI" and the "Ollama Commit Summarizer" plugins.
 
Alternatively, on enabling "open-webui", a web portal is available at: http://localhost:8080/:
services.open-webui.enable = true;


== Troubleshooting ==
== Troubleshooting ==
=== AMD GPU with open source driver ===  
=== AMD GPU with open source driver ===  


In certain cases ollama might not allow your system to use GPU acceleration if it cannot be sure your GPU/driver is compatible.
In certain cases Ollama might not allow your system to use GPU acceleration if it cannot be sure your GPU/driver is compatible.


However you can attempt to force-enable the usage of your GPU by overriding the LLVM target. <ref>https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides</ref>
However you can attempt to force-enable the usage of your GPU by overriding the LLVM target. <ref>https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides</ref>
Line 33: Line 106:
</syntaxhighlight>
</syntaxhighlight>


In this example the LLVM target is "gfx1031", that is, version "10.3.1", you can then override that value for ollama:
In this example the LLVM target is "gfx1031", that is, version "10.3.1", you can then override that value for Ollama for the systemd service:
<syntaxhighlight lang="nix">
<syntaxhighlight lang="nix">
services.ollama = {
services.ollama = {
Line 41: Line 114:
     HCC_AMDGPU_TARGET = "gfx1031"; # used to be necessary, but doesn't seem to anymore
     HCC_AMDGPU_TARGET = "gfx1031"; # used to be necessary, but doesn't seem to anymore
   };
   };
  # results in environment variable "HSA_OVERRIDE_GFX_VERSION=10.3.1"
   rocmOverrideGfx = "10.3.1";
   rocmOverrideGfx = "10.3.1";
};
};
</syntaxhighlight>
</syntaxhighlight>
or via an environment variable in front of the standalone app
<syntaxhighlight lang="bash">
HSA_OVERRIDE_GFX_VERSION=10.3.1 ollama serve
</syntaxhighlight>
If there are still errors, you can attempt to set a similar value that is listed [https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides here].
If there are still errors, you can attempt to set a similar value that is listed [https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides here].


[[Category:Server]]
[[Category:Server]]
[[Category:Applications]]
[[Category:CLI Applications]]