ZFS: Difference between revisions

From NixOS Wiki
imported>Adisbladis
ZFS encryption is now available in the stable package.
EJIEK (talk | contribs)
m rm an extra bracket in the latest compatible Kernel selector left from the previous edit
 
(151 intermediate revisions by 61 users not shown)
Line 1: Line 1:
[[NixOS]] has native support for ZFS ([[wikipedia:ZFS]]). It uses the code from the [http://zfsonlinux.org/ ZFS on Linux project], including kernel modules and userspace utilities. The installation CD also comes with zfs.
[https://zfsonlinux.org/ {{PAGENAME}}] ([[wikipedia:en:{{PAGENAME}}]]), also known as [https://openzfs.org/ OpenZFS] ([[wikipedia:en:OpenZFS]]), is a modern filesystem which is well supported on [[NixOS]].
[[NixOS]] is the fastest Linux distribution for ZFS as its linux kernel comes with [https://www.phoronix.com/scan.php?page=news_item&px=NixOS-Linux-5.0-ZFS-FPU-Drop patches] that
[[category:filesystem]]
allows ZFS to use CPU extensions when computing checksums or when doing encryption/decryption.
Besides the ''zfs'' package (''ZFS Filesystem Linux Kernel module'') <ref>https://search.nixos.org/packages?channel=unstable&show=zfs&query=zfs</ref> itself, there are many packages in the ZFS ecosystem available.


== What works ==
ZFS integrates into NixOS via the <code>boot.zfs</code><ref>https://search.nixos.org/options?channel=unstable&query=boot.zfs</ref> and <code>service.zfs</code><ref>https://search.nixos.org/options?channel=unstable&query=services.zfs</ref> options.


All functionality supported by ZFS on Linux, including:
== Limitations ==
* Using ZFS as the root filesystem (using either MS-DOS or GPT partitions)
* Encrypted ZFS pools (using either native encryption or Linux's dm-crypt)
* All the other ZFS goodies (cheap snapshotting, checksumming, compression, RAID-Z, …)
* Auto-snapshotting service


== Known issues ==
==== Latest Kernel compatible with ZFS ====
ZFS often does not support the latest Kernel versions. It is recommended to use an LTS Kernel version whenever possible; the NixOS default Kernel is generally suitable. See [[Linux kernel|Linux Kernel]] for more information about configuring a specific Kernel version.
 
If your config specifies a Kernel version that is not officially supported by upstream ZFS, the ZFS module will fail to evaluate with an error that the ZFS package is "broken".
 
===== Selecting the latest ZFS-compatible Kernel =====
{{Warning|This will often result in the Kernel version going backwards as Kernel versions become end-of-life and are removed from Nixpkgs. If you need more control over the Kernel version due to hardware requirements, consider simply pinning a specific version rather than calculating it as below.}}
To use the latest ZFS-compatible Kernel currently available, the following configuration may be used.


* You shouldn't use a ZVol as a swap device, as it can deadlock under memory pressure
* You should set the <code>mountpoint</code> property of your ZFS filesystems to be <code>legacy</code> and let NixOS mount them like any other filesystem (such as ext4 or btrfs), otherwise some filesystems may fail to mount due to ordering issues
* All ZFS pools available to the system will be forcibly imported during boot, regardless if you had imported them before or not. You should be careful not to have any other system accessing them at the same time, otherwise it will corrupt your pools. Normally (for the common desktop user) this should not be a problem, as a hard disk is usually only directly connected to one machine.
* Using NixOS on a ZFS root file system might result in the boot error "external pointer tables not supported" when the number of hardlinks in the nix store gets very high. This can be avoided by adding this option to your <code>configuration.nix</code> file:
<syntaxhighlight lang="nix">
<syntaxhighlight lang="nix">
boot.loader.grub.copyKernels = true;
{
  config,
  lib,
  pkgs,
  ...
}:
 
let
  zfsCompatibleKernelPackages = lib.filterAttrs (
    name: kernelPackages:
    (builtins.match "linux_[0-9]+_[0-9]+" name) != null
    && (builtins.tryEval kernelPackages).success
    && (!kernelPackages.${config.boot.zfs.package.kernelModuleAttribute}.meta.broken)
  ) pkgs.linuxKernel.packages;
  latestKernelPackage = lib.last (
    lib.sort (a: b: (lib.versionOlder a.kernel.version b.kernel.version)) (
      builtins.attrValues zfsCompatibleKernelPackages
    )
  );
in
{
  # Note this might jump back and forth as kernels are added or removed.
  boot.kernelPackages = latestKernelPackage;
}
</syntaxhighlight>
</syntaxhighlight>


== How to use it ==
===== Using unstable, pre-release ZFS =====
{{Warning|Pre-release ZFS versions may be less well-tested, and may have critical bugs that may cause data loss.}}
In some cases, a pre-release version of ZFS may be available that supports a newer Kernel. Use it with <code>boot.zfs.package = pkgs.zfs_unstable;</code>.


{{warning|Add all mounts to your configuration as legacy mounts as described in this article instead of zfs's own mount mechanism. Otherwise mounts might be not mounted in the correct order during boot!}}
==== Partial support for swap on ZFS ====


Just add the following to your <code>configuration.nix</code> file:
ZFS does not support swapfiles. swap devices can be used instead. Additionally, hibernation is disabled by default due to a [https://github.com/NixOS/nixpkgs/pull/208037 high risk] of data corruption. Note that even if that pull request is merged, it does not fully mitigate the risk. If you wish to enable hibernation regardless and made sure that swapfiles on ZFS are not used, set <code>boot.zfs.allowHibernation = true</code>.
<syntaxhighlight lang="nix">
 
boot.supportedFilesystems = [ "zfs" ];
==== Zpool not found ====
</syntaxhighlight>
 
If NixOS fails to import the zpool on reboot, you may need to add <syntaxhighlight lang="nix" inline>boot.zfs.devNodes = "/dev/disk/by-path";</syntaxhighlight> or <syntaxhighlight lang="nix" inline>boot.zfs.devNodes = "/dev/disk/by-partuuid";</syntaxhighlight> to your configuration.nix file.


Be sure to also set <code>networking.hostId</code>, see https://nixos.org/nixos/manual/options.html#opt-networking.hostId
The differences can be tested by running <code>zpool import -d /dev/disk/by-id</code> when none of the pools are discovered, eg. a live iso.


To activate the configuration and load the ZFS kernel module, run:
==== Declarative mounting of ZFS datasets ====
<syntaxhighlight lang="console">
nixos-rebuild switch
</syntaxhighlight>


All ZFS functionality should now be available.
When using legacy mountpoints (created with e.g. <code>zfs create -o mountpoint=legacy</code>) mountpoints must be specified with <code>fileSystems."/mount/point" = {};</code>. ZFS native mountpoints are not managed as part of the system configuration but better support hibernation with a separate swap partition. This can lead to conflicts if ZFS mount service is also enabled for the same datasets. Disable it with <code>systemd.services.zfs-mount.enable = false;</code>.


If you want NixOS to auto-mount your ZFS filesystems during boot, you should set their <code>mountpoint</code> property to <code>legacy</code> and treat it like if it were any other filesystem, i.e.: mount the filesystem manually and regenerate your list of filesystems, as such:
== Guides ==


<syntaxhighlight lang="console">
==== '''OpenZFS Documentation for installing''' ====
zfs set mountpoint=legacy <pool>/<fs>
</syntaxhighlight>


<syntaxhighlight lang="console">
{{warning|This guide is not endorsed by NixOS and some features like immutable root do not have upstream support and could break on updates. If an issue arises while following this guide, please consult the guides support channels.}}
mount -t zfs <pool>/<fs> <mountpoint>
</syntaxhighlight>


This will regenerate your /etc/nixos/hardware-configuration.nix file:
One guide for a NixOS installation with ZFS is maintained at [https://openzfs.github.io/openzfs-docs/Getting%20Started/NixOS/ OpenZFS Documentation (''Getting Started'' for ''NixOS'')]
<syntaxhighlight lang="console">
nixos-generate-config
</syntaxhighlight>


<syntaxhighlight lang="console">
It is about:
nixos-rebuild switch
* [https://openzfs.github.io/openzfs-docs/Getting%20Started/NixOS/index.html#installation Enabling ZFS on an existing NixOS installation]
</syntaxhighlight>
* [https://openzfs.github.io/openzfs-docs/Getting%20Started/NixOS/#root-on-zfs (Installing NixOS with) Root on ZFS].


NixOS will now make sure that your filesystem is always mounted during boot.
It is not about:
* Giving understandable, easy to follow instructions which are close to the standard installation guide
* Integrating ZFS into your existing config
==== '''Simple NixOS ZFS on root installation''' ====


The <code>nixos-generate-config</code> command regenerates your <code>/etc/nixos/hardware-configuration.nix</code> file, which includes the list of filesystems for NixOS to mount during boot, e.g.:
Start from here in the NixOS manual: [https://nixos.org/manual/nixos/stable/#sec-installation-manual].
<syntaxhighlight lang="nix">
Under manual partitioning [https://nixos.org/manual/nixos/stable/#sec-installation-manual-partitioning] do this instead:
  fileSystems."/home" =
    { device = "rpool/home";
      fsType = "zfs";
    };


  fileSystems."/backup" =
'''Partition your disk with your favorite partition tool'''
    { device = "rpool/backup";
      fsType = "zfs";
    };
</syntaxhighlight>


== Changing the Cache Size ==
We need the following partitions:


ZFS has a complicated cache system. The cache you're most likely to want to fiddle with is the called Adaptive Replacement Cache, usually abbreviated ARC.  This is the first-level (fastest) of ZFS's caches.
* 1G for boot partition with "boot" as the partition label (also called name in some tools) and ef00 as partition code
* 4G for a swap partition with "swap" as the partition label and 8200 as partition code. We will encrypt this with a random secret on each boot.
* The rest of disk space for zfs with "root" as the partition label and 8300 as partition code (default code)


You can increase or decrease a parameter which represents approximately the maximum size of the ARC cache. You can't set its actual size (ZFS does that adaptively according to its workload), nor can you set its exact maximum size.
Reason for swap partition: ZFS does use a caching mechanism that is different from the normal Linux cache infrastructure.
In low-memory situations, ZFS therefore might need a bit longer to free up memory from its cache. The swap partition will help with that.


To change the maximum size of the ARC cache to (for example) 12 GB, add this to your NixOS configuration:
Example with gdisk:
<syntaxhighlight lang="nix">
boot.kernelParams = ["zfs.zfs_arc_max=12884901888"];
</syntaxhighlight>


In some versions of ZFS, you can change the maximum size of the ARC on the fly, but in NixOS 18.03 this is not possible.  (Nor is it possible in other versions of ZFS on Linux yet, according to Stack Exchange.)
<syntaxhighlight lang="bash">
sudo gdisk /dev/nvme0n1
GPT fdisk (gdisk) version 1.0.10
...
# boot partition
Command (? for help): n
Partition number (1-128, default 1):
First sector (2048-1000215182, default = 2048) or {+-}size{KMGTP}:
Last sector (2048-1000215182, default = 1000215175) or {+-}size{KMGTP}: +1G
Current type is 8300 (Linux filesystem)
Hex code or GUID (L to show codes, Enter = 8300): ef00
Changed type of partition to 'EFI system partition'


== Automatic Scrubbing ==
# Swap partition
Command (? for help): n
Partition number (2-128, default 2):
First sector (2099200-1000215182, default = 2099200) or {+-}size{KMGTP}:
Last sector (2099200-1000215182, default = 1000215175) or {+-}size{KMGTP}: +4G
Current type is 8300 (Linux filesystem)
Hex code or GUID (L to show codes, Enter = 8300): 8200
Changed type of partition to 'Linux swap'


Regular scrubbing of ZFS pools is recommended and can be enabled in your NixOS configuration via:
# root partition
<syntaxhighlight lang="nix">
Command (? for help): n
services.zfs.autoScrub.enable = true;
Partition number (3-128, default 3):
</syntaxhighlight>
First sector (10487808-1000215182, default = 10487808) or {+-}size{KMGTP}:  
Last sector (10487808-1000215182, default = 1000215175) or {+-}size{KMGTP}:
Current type is 8300 (Linux filesystem)
Hex code or GUID (L to show codes, Enter = 8300):
Changed type of partition to 'Linux filesystem'


You can tweak the interval (defaults to once a week) and which pools should be scrubbed (defaults to all).
# write changes
Command (? for help): w


== Reservations ==
Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING
PARTITIONS!!


Since zfs is a copy-on-write filesystem even for deleting files disk space is needed. Therefore it should be avoided to run out of disk space. Luckily it is possible to reserve disk space for datasets to prevent this.
Do you want to proceed? (Y/N): y
OK; writing new GUID partition table (GPT) to /dev/nvme0n1.
The operation has completed successfully.
</syntaxhighlight>
Final partition table
<syntaxhighlight lang=bash>
Number  Start (sector)    End (sector)  Size      Code  Name
  1            2048        2099199  1024.0 MiB  EF00  EFI system partition
  2        2099200        10487807  4.0 GiB    8200  Linux swap
  3        10487808      1000215175  471.9 GiB  8300  Linux filesystem
</syntaxhighlight>


To enable reservations pick any dataset of your and do:
'''Let's use variables from now on for simplicity.
: reserves enough disk space to have room for cleanups/deletion
Get the device ID in <code>/dev/disk/by-id/</code>, in our case here it is <code>nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O</code>
<syntaxhighlight lang="console">
'''
zfs set reservation=1G zroot
<syntaxhighlight lang=bash>
BOOT=/dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part1
SWAP=/dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part2
DISK=/dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part3
</syntaxhighlight>
</syntaxhighlight>


where <code>zroot</code> should be replaced by a dataset in your pool.
'''Make a ZFS pool with encryption and mount points'''
 
'''Note:''' zpool config can significantly affect performance (especially the ashift option) so you may want to do some research. The [https://jrs-s.net/2018/08/17/zfs-tuning-cheat-sheet/ ZFS tuning cheatsheet] or [https://wiki.archlinux.org/title/ZFS#Storage_pools ArchWiki] is a good place to start.
 
<syntaxhighlight lang="bash">
zpool create -O encryption=on -O keyformat=passphrase -O keylocation=prompt -O compression=zstd -O mountpoint=none -O xattr=sa -O acltype=posixacl -o ashift=12 zpool $DISK
# enter the password to decrypt the pool at boot
Enter new passphrase:
Re-enter new passphrase:


== How to use the auto-snapshotting service ==
# Create datasets
zfs create zpool/root
zfs create zpool/nix
zfs create zpool/var
zfs create zpool/home


To auto-snapshot a ZFS filesystem or a ZVol, set its <code>com.sun:auto-snapshot</code> property to <code>true</code>, like this:
mkdir -p /mnt
mount -t zfs zpool/root /mnt -o zfsutil
mkdir /mnt/nix /mnt/var /mnt/home


<syntaxhighlight lang="console">
mount -t zfs zpool/nix /mnt/nix -o zfsutil
zfs set com.sun:auto-snapshot=true <pool>/<fs>
mount -t zfs zpool/var /mnt/var -o zfsutil
mount -t zfs zpool/home /mnt/home -o zfsutil
</syntaxhighlight>
</syntaxhighlight>


(Note that by default this property will be inherited by all descendent datasets, but you can set their properties to false if you prefer.)
Output from <syntaxhighlight lang="bash" inline>zpool status</syntaxhighlight>:
<syntaxhighlight >
zpool status
  pool: zpool
state: ONLINE
...
config:
 
NAME                              STATE    READ WRITE CKSUM
zpool                              ONLINE      0    0    0
  nvme-eui.0025384b21406566-part2  ONLINE      0    0    0
 
</syntaxhighlight>


Then, to enable the auto-snapshot service, add this to your <code>configuration.nix</code>:
'''Format boot partition with FAT as filesystem'''
<syntaxhighlight lang="nix">
<syntaxhighlight lang="bash">
services.zfs.autoSnapshot.enable = true;
mkfs.fat -F 32 -n boot $BOOT
</syntaxhighlight>
</syntaxhighlight>


And finally, run <code>nixos-rebuild switch</code> to activate the new configuration!
'''Enable swap'''
<syntaxhighlight lang="bash">
mkswap -L swap $SWAP
swapon $SWAP
</syntaxhighlight>


By default, the auto-snapshot service will keep the latest four 15-minute, 24 hourly, 7 daily, 4 weekly and 12 monthly snapshots.
'''Installation'''
You can globally override this configuration by setting the desired number of snapshots in your <code>configuration.nix</code>, like this:
# Mount boot
<syntaxhighlight lang="bash">
mkdir -p /mnt/boot
mount $BOOT /mnt/boot


<syntaxhighlight lang="nix">
# Generate the nixos config
services.zfs.autoSnapshot = {
nixos-generate-config --root /mnt
  enable = true;
...
  frequent = 8; # keep the latest eight 15-minute snapshots (instead of four)
writing /mnt/etc/nixos/hardware-configuration.nix...
  monthly = 1;  # keep only one monthly snapshot (instead of twelve)
writing /mnt/etc/nixos/configuration.nix...
};
For more hardware-specific settings, see https://github.com/NixOS/nixos-hardware.
</syntaxhighlight>
</syntaxhighlight>


You can also disable a given type of snapshots on a per-dataset basis by setting a ZFS property, like this:
Now edit the configuration.nix that was just created in <code>/mnt/etc/nixos/configuration.nix</code> and make sure to have at least the following content in it.
 
<syntaxhighlight lang="nix">
{
...
  # Boot loader config for configuration.nix:
  boot.loader.systemd-boot.enable = true;


<syntaxhighlight lang="console">
  # for local disks that are not shared over the network, we don't need this to be random
zfs set com.sun:auto-snapshot:weekly=false <pool>/<fs>
  networking.hostId = "8425e349";
...
</syntaxhighlight>
</syntaxhighlight>


This would disable only weekly snapshots on the given filesystem.
Now check the hardware-configuration.nix in <code>/mnt/etc/nixos/hardware-configuration.nix</code> and add whats missing e.g. <code>options = [ "zfsutil" ]</code> for all filesystems except boot and <code>randomEncryption = true;</code> for the swap partition. Also change the generated swap device to the partition we created e.g. <code>/dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part2</code> in this case and <code>/dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part1</code> for boot.


== How to install NixOS on a ZFS root filesystem ==
<syntaxhighlight lang="nix">
...
  fileSystems."/" = {
    device = "zpool/root";
    fsType = "zfs";
    # the zfsutil option is needed when mounting zfs datasets without "legacy" mountpoints
    options = [ "zfsutil" ];
  };


=== Single-disk ===
  fileSystems."/nix" = {
    device = "zpool/nix";
    fsType = "zfs";
    options = [ "zfsutil" ];
  };


These instructions will get you started with a single-disk ZFS setup. If you're interested in setting up RAID, see below.
  fileSystems."/var" = {
    device = "zpool/var";
    fsType = "zfs";
    options = [ "zfsutil" ];
  };


<syntaxhighlight lang="console">
  fileSystems."/home" = {
# Always use the by-id aliases for devices, otherwise ZFS can choke on imports.
    device = "zpool/home";
DISK=/dev/disk/by-id/...
    fsType = "zfs";
    options = [ "zfsutil" ];
  };


# Partition 2 will be the boot partition, needed for legacy (BIOS) boot
  fileSystems."/boot" = {
sgdisk -a1 -n2:34:2047 -t2:EF02 $DISK
  device = "/dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part1";
# If you need EFI support, make an EFI partition:
  fsType = "vfat";
sgdisk -n3:1M:+512M -t3:EF00 $DISK
  };
# Partition 1 will be the main ZFS partition, using up the remaining space on the drive.
sgdisk -n1:0:0 -t1:BF01 $DISK


# Create the pool. If you want to tweak this a bit and you're feeling adventurous, you
   swapDevices = [{
# might try adding one or more of the following additional options:
    device = "/dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part2";
# To disable writing access times:
    randomEncryption = true;
#   -O atime=off
   }];
# To enable filesystem compression:
}
#  -O compression=lz4
</syntaxhighlight>
# To enable normalizing unicode filenames (and implicitly set utf8only=on):
-O normalization=formD
# To improve performance of certain extended attributes:
-O xattr=sa
# For systemd-journald posixacls are required
#  -O  acltype=posixacl
# To specify that your drive uses 4K sectors instead of relying on the size reported
# by the hardware (note small 'o'):
#   -o ashift=12
#
# The 'mountpoint=none' option disables ZFS's automount machinery; we'll use the
# normal fstab-based mounting machinery in Linux.
# '-R /mnt' is not a persistent property of the FS, it'll just be used while we're installing.
zpool create -O mountpoint=none -R /mnt rpool $DISK-part1


# Create the filesystems. This layout is designed so that /home is separate from the root
Now you may install NixOS with <code>nixos-install</code>.
# filesystem, as you'll likely want to snapshot it differently for backup purposes. It also
# makes a "nixos" filesystem underneath the root, to support installing multiple OSes if
# that's something you choose to do in future.
zfs create -o mountpoint=none rpool/root
zfs create -o mountpoint=legacy rpool/root/nixos
zfs create -o mountpoint=legacy rpool/home


# Mount the filesystems manually. The nixos installer will detect these mountpoints
== Importing on boot ==
# and save them to /mnt/nixos/hardware-configuration.nix during the install process.
mount -t zfs rpool/root/nixos /mnt
mkdir /mnt/home
mount -t zfs rpool/home /mnt/home


# If you need to boot EFI, you'll need to set up /boot as a non-ZFS partition.
If you create a zpool, it will not be imported on the next boot unless you either add the zpool name to <syntaxhighlight lang="nix" inline>boot.zfs.extraPools</syntaxhighlight>:
mkfs.vfat $DISK-part3
mkdir /mnt/boot
mount $DISK-part3 /mnt/boot


# Generate the NixOS configuration, as per the NixOS manual.
<syntaxhighlight lang="nix">
nixos-generate-config --root /mnt
## In /etc/nixos/configuration.nix:
boot.zfs.extraPools = [ "zpool_name" ];
</syntaxhighlight>


# Edit /mnt/etc/nixos/configuration.nix and add the following line:
or if you are using legacy mountpoints, add a <syntaxhighlight lang="nix" inline>fileSystems</syntaxhighlight> entry and NixOS will automatically detect that the pool needs to be imported:
## ---8<-------------------------8<---
  boot.supportedFilesystems = [ "zfs" ];
## ---8<-------------------------8<---


# Also, make sure you set the networking.hostId option, which ZFS requires:
<syntaxhighlight lang="nix">
## ---8<-------------------------8<---
## In /etc/nixos/configuration.nix:
   networking.hostId = "<random 8-digit hex string>"
fileSystems."/mount/point" = {
## ---8<-------------------------8<---
  device = "zpool_name";
# See https://nixos.org/nixos/manual/options.html#opt-networking.hostId for more.
   fsType = "zfs";
};
</syntaxhighlight>
 
=== Zpool created with bus-based disk names ===
If you used bus-based disk names in the <syntaxhighlight inline>zpool create</syntaxhighlight> command, e.g., <syntaxhighlight inline>/dev/sda</syntaxhighlight>, NixOS may run into issues importing the pool if the names change. Even if the pool is able to be mounted (with <syntaxhighlight lang="nix" inline>boot.zfs.devNodes = "/dev/disk/by-partuuid";</syntaxhighlight> set), this may manifest as a <syntaxhighlight inline>FAULTED</syntaxhighlight> disk and a <syntaxhighlight inline>DEGRADED</syntaxhighlight> pool reported by <syntaxhighlight inline>zpool status</syntaxhighlight>. The fix is to re-import the pool using disk IDs:


# Continue with installation!
<syntaxhighlight>
nixos-install
# zpool export zpool_name
# zpool import -d /dev/disk/by-id zpool_name
</syntaxhighlight>
</syntaxhighlight>


=== With RAID ===
The import setting is reflected in <syntaxhighlight inline="" lang="bash">/etc/zfs/zpool.cache</syntaxhighlight>, so it should persist through subsequent boots.


Here's an example of how to create a ZFS root pool using 4 disks in RAID-10 mode (striping+mirroring), create a ZFS root+home filesystems and install NixOS on them:
=== Zpool created with disk IDs ===
(thanks to Danny Wilson for the instructions)
If you used disk IDs to refer to disks in the <code>zpool create</code> command, e.g., <code>/dev/disk/by-id</code>, then NixOS may consistently fail to import the pool unless <code>boot.zfs.devNodes = "/dev/disk/by-id"</code> is also set.


<syntaxhighlight lang="console">
== Mount datasets at boot ==
# Verify that the installer environment has loaded the ZFS kernel module (default since 18.09)
zfs-mount service is enabled by default on NixOS 22.05.
lsmod | grep zfs


# Create boot partition and (zfs) data partition
To automatically mount a dataset at boot, you only need to set <code>canmount=on</code> and <code>mountpoint=/mount/point</code> on the respective datasets.
# See: https://github.com/zfsonlinux/zfs/wiki/Ubuntu-18.04-Root-on-ZFS#step-2-disk-formatting
fdisk /dev/sda


# Copy the partition table to the other disks
== Changing the Adaptive Replacement Cache size ==
sfdisk --dump /dev/sda | sfdisk /dev/sdb
sfdisk --dump /dev/sda | sfdisk /dev/sdc
sfdisk --dump /dev/sda | sfdisk /dev/sdd


# Create a RAID-10 ZFS pool. Use "-o ashift=12" to create your ZFS pool with 4K sectors
To change the maximum size of the ARC to (for example) 12 GB, add this to your NixOS configuration:
# enable posixacls, otherwise journalctl is broken for users
<syntaxhighlight lang="nix">
zpool create -o ashift=12 -o altroot=/mnt -O  acltype=posixacl -O xattr=sa rpool mirror /dev/sda2 /dev/sdb2 mirror /dev/sdc2 /dev/sdd2
boot.kernelParams = [ "zfs.zfs_arc_max=12884901888" ];
</syntaxhighlight>


# Create the filesystems
== Tuning other parameters ==
zfs create -o mountpoint=none rpool/root
zfs create -o mountpoint=legacy rpool/root/nixos
zfs create -o mountpoint=legacy rpool/home
zfs set compression=lz4 rpool/home    # compress the home directories automatically


# Mount the filesystems manually
To tune other attributes of ARC, L2ARC or of ZFS itself via runtime modprobe config, add this to your NixOS configuration (keys and values are examples only!):
mount -t zfs rpool/root/nixos /mnt
<syntaxhighlight lang="nix">
    boot.extraModprobeConfig = ''
      options zfs l2arc_noprefetch=0 l2arc_write_boost=33554432 l2arc_write_max=16777216 zfs_arc_max=2147483648
    '';
</syntaxhighlight>


mkdir /mnt/home
You can confirm whether any specified configuration/tuning got applied via commands like <code>arc_summary</code> and <code>arcstat -a -s " "</code>.
mount -t zfs rpool/home /mnt/home


# Create a raid mirror of the first partitions for /boot (GRUB)
== Automatic scrubbing ==
mdadm --create /dev/md127 --metadata=0.90 --level=1 --raid-devices=4 /dev/sd[a,b,c,d]1
mkfs.ext4 -m 0 -L boot -j /dev/md127


mkdir /mnt/boot
Regular scrubbing of ZFS pools is recommended and can be enabled in your NixOS configuration via:
mount /dev/md127 /mnt/boot
<syntaxhighlight lang="nix">
services.zfs.autoScrub.enable = true;
</syntaxhighlight>


# Generate the NixOS configuration, as per the NixOS manual
You can tweak the interval (defaults to once a week) and which pools should be scrubbed (defaults to all).
nixos-generate-config --root /mnt
== Remote unlock ==
=== Unlock encrypted ZFS via SSH on boot ===


# Now edit the generated hardware config:
{{note|As of 22.05, rebuilding your config with the below directions may result in a situation where, if you want to revert the changes, you may need to do some pretty hairy nix-store manipulation to be able to successfully rebuild, see https://github.com/NixOS/nixpkgs/issues/101462#issuecomment-1172926129}}
nano /mnt/etc/nixos/hardware-configuration.nix


## ---8<-------------------------8<---
In case you want unlock a machine remotely (after an update), having an ssh service in initrd for the password prompt is handy:
# This is what you want:


   fileSystems."/" =
<syntaxhighlight lang="nix">
     { device = "rpool/root/nixos";
boot = {
       fsType = "zfs";
   initrd.network = {
    # This will use udhcp to get an ip address.
    # Make sure you have added the kernel module for your network driver to `boot.initrd.availableKernelModules`,
    # so your initrd can load it!
    # Static ip addresses might be configured using the ip argument in kernel command line:
    # https://www.kernel.org/doc/Documentation/filesystems/nfs/nfsroot.txt
    enable = true;
     ssh = {
      enable = true;
      # To prevent ssh clients from freaking out because a different host key is used,
      # a different port for ssh is useful (assuming the same host has also a regular sshd running)
      port = 2222;
      # hostKeys paths must be unquoted strings, otherwise you'll run into issues with boot.initrd.secrets
      # the keys are copied to initrd from the path specified; multiple keys can be set
      # you can generate any number of host keys using
      # `ssh-keygen -t ed25519 -N "" -f /path/to/ssh_host_ed25519_key`
      hostKeys = [ /path/to/ssh_host_rsa_key ];
       # public ssh key used for login
      authorizedKeys = [ "ssh-rsa AAAA..." ];
     };
     };
  };
};
</syntaxhighlight>
* In order to use DHCP in the initrd, network manager must not be enabled and <syntaxhighlight lang="nix" inline>networking.useDHCP = true;</syntaxhighlight> must be set.
* If your network card isn't started, you'll need to add the according Kernel module to the Kernel and initrd as well, e.g. <syntaxhighlight lang="nix">
boot.kernelModules = [ "r8169" ];
boot.initrd.kernelModules = [ "r8169" ];</syntaxhighlight>


  fileSystems."/home" =
After that you can unlock your datasets using the following ssh command:
    { device = "rpool/home";
      fsType = "zfs";
    };


  fileSystems."/boot" =
<syntaxhighlight>
    { device = "/dev/md127";
ssh -p 2222 root@host "zpool import -a; zfs load-key -a && killall zfs"
      fsType = "ext4";
</syntaxhighlight>
    };
## ---8<-------------------------8<---


# configuration.nix needs an adjustment:
Alternatively you could also add the commands as postCommands to your configuration.nix, then you just have to ssh into the initrd:
nano /mnt/etc/nixos/configuration.nix


## ---8<-------------------------8<---
<syntaxhighlight>
# This is some more of what you want:
boot = {
  initrd.network = {
    postCommands = ''
    # Import all pools
    zpool import -a
    # Or import selected pools
    zpool import pool2
    zpool import pool3
    zpool import pool4
    # Add the load-key command to the .profile
    echo "zfs load-key -a; killall zfs" >> /root/.profile
    '';
  };
};
</syntaxhighlight>


  boot.loader.grub.devices = [ "/dev/sda" "/dev/sdb" "/dev/sdc" "/dev/sdd" ];
After that you can unlock your datasets using the following ssh command:
  boot.supportedFilesystems = [ "zfs" ];
## ---8<-------------------------8<---


# Ready to go!
<syntaxhighlight>
nixos-install
ssh -p 2222 root@host
</syntaxhighlight>
</syntaxhighlight>


== Encrypted ZFS ==
== Reservations ==
 
On ZFS, the performance will deteriorate significantly when more than 80% of the available space is used.  To avoid this, reserve disk space beforehand.


Assuming that a zpool named <code>zroot</code> has been already created as described.
To reserve space create a new unused dataset that gets a guaranteed disk space of 10GB.
Encrypted datasets can be added on top as follow:
: posixacl are needed for journald
<syntaxhighlight lang="console">
zfs create -o  acltype=posixacl -o xattr=sa -o encryption=aes-256-gcm -o keyformat=passphrase -o mountpoint=none zroot/root
</syntaxHighlight>


Instead of encrypting just a dataset (and all its child datasets) you can also directly encrypt the whole pool upon creation:
<syntaxhighlight lang="console">
<syntaxhighlight lang="console">
zpool create -o ashift=12 -o altroot="/mnt" -O encryption=aes-256-gcm -O keyformat=passphrase zroot /dev/sdxy
# zfs create -o refreservation=10G -o mountpoint=none zroot/reserved
</syntaxHighlight>
</syntaxhighlight>


All child datasets will inherit the encryption.
== Auto ZFS trimming ==


Note that using grub to boot directly from zfs with encryption enabled might not work at the moment, so a separate boot partition is required.
<syntaxhighlight lang="nix" inline>services.zfs.trim.enable = true;</syntaxhighlight>.


A full encrypted nixos installation on an UEFI system could look like this:
This will periodically run <code>zpool trim</code>. Note that this is different from the <code>autotrim</code> pool property. For further information, see the <code>zpool-trim</code> and <code>zpoolprops</code> man pages.
<syntaxhighlight lang="console">
zfs create -o mountpoint=legacy -o sync=disabled zroot/root/tmp
zfs create -o mountpoint=legacy -o com.sun:auto-snapshot=true zroot/root/home
zfs create -o mountpoint=legacy -o com.sun:auto-snapshot=true zroot/root/nixos
</syntaxHighlight>


<syntaxhighlight lang="console">
== Take snapshots automatically ==
mount -t zfs zroot/root/nixos /mnt
mkdir /mnt/{home,tmp,boot}
</syntaxHighlight>
: assuming that /dev/sda1 is the boot partition
<syntaxhighlight lang="console">
mkfs.vfat /dev/sda1
mount /dev/sda1 /mnt/boot/
</syntaxHighlight>


<syntaxhighlight lang="console">
See <code>services.sanoid</code> section in <code>man configuration.nix</code>.
mount -t zfs zroot/root/home /mnt/home/
mount -t zfs zroot/root/tmp /mnt/tmp/
</syntaxHighlight>


<syntaxhighlight lang="console">
== NFS share ==
nixos-generate-config  --root /mnt
</syntaxHighlight>


To unlock the zfs dataset at root also the <code>boot.zfs.requestEncryptionCredentials</code> option must be set to <code>true</code>. Note that at the moment one can only use passphrases (<code>keylocation=prompt</code>) for pools that are mounted as the root fs. Data pools are mounted by a background systemd service and need a key (<code>keylocation=file://</code>). A key file could be for example put on a root filesystem if it is encrypted.
With <code>sharenfs</code> property, ZFS has build-in support for generating <code>/etc/exports.d/zfs.exports</code> file, which in turn is processed by NFS service automatically.


If the key is not on the root filesystem, you will also need to set <code>zfs-import-poolname.serviceConfig.RequiresMountsFor=/path/to/key</code>, where <code>poolname</code> is the name of the data pool. This makes sure that systemd will mount the filesystem for <code>/path/to/key</code> first before importing the zfs pool.
{{warning|If you are intending on defining an IPv6 subnet as part of your sharenfs rule, as of ZFS 2.0.6 (2021-09-23) please note that due to a bug in openzfs '''your rule will not correctly apply''', and may result in a security vulnerability (CVE-2013-20001). A fix has been implemented in the next yet-to-be-released upstream version - [https://github.com/openzfs/zfs/pull/11939 openzfs/zfs#11939]}}


=== Unlock encrypted zfs via ssh on boot ===
To enable NFS share on a dataset, only two steps are needed:


In case you want unlock a machine remotely (after an update), having a dropbear ssh service in initrd for the password prompt is handy:
First, enable [[NFS|NFS service]]:
<syntaxhighlight lang="nix">
services.nfs.server.enable = true;
</syntaxhighlight>
Only this line is needed. Configure firewall if necessary, as described in [[NFS]] article.


<syntaxhighlight lang="nix">
Then, set <code>sharenfs</code> property:
boot = {
<syntaxhighlight lang="console">
  initrd.network = {
zfs set sharenfs="ro=192.168.1.0/24,all_squash,anonuid=70,anongid=70" rpool/myData
    # This will use udhcp to get an ip address.
</syntaxhighlight>
    # Make sure you have added the kernel module for your network driver to `boot.initrd.availableKernelModules`,  
For more options, see <code>man 5 exports</code>.
    # so your initrd can load it!
    # Static ip addresses might be configured using the ip argument in kernel command line:
    # https://www.kernel.org/doc/Documentation/filesystems/nfs/nfsroot.txt
    enable = true;
    ssh = {
        enable = true;
        # To prevent ssh from freaking out because a different host key is used,
        # a different port for dropbear is useful (assuming the same host has also a normal sshd running)
        port = 2222;
        # dropbear uses key format different from openssh; can be generated by using:
        # $ nix-shell -p dropbear --command "dropbearkey -t ecdsa -f /tmp/initrd-ssh-key"
        hostECDSAKey = /run/keys/initrd-ssh-key;
        # public ssh key used for login
        authorizedKeys = [ "ssh-rsa AAAA..." ];
    };
    # this will automatically load the zfs password prompt on login
    # and kill the other prompt so boot can continue
    postCommands = ''
      echo "zfs load-key -a; killall zfs" >> /root/.profile
    '';
  };
};
</syntaxHighlight>
* In order to use DHCP in the initrd, network manager must not be enabled and <code>networking.useDHCP = true;</code> must be set.
* If your network card isn't started, you'll need to add the according kernel module to the initrd as well, e.g. <code>boot.initrd.kernelModules = [ "r8169" ];</code>


=== Import and unlock multiple encrypted pools/dataset at boot ===
Todo: sharesmb property for Samba.


If you have not only one encrypted pool/dataset but multiple ones and you want to import and unlock them at boot, so that they can be automounted using the hardware-configuration.nix, you could just amend the <code>boot.initrd.network.postCommands</code> option.
== Mail notifications (ZFS Event Daemon) ==


Unfortunately having an unlock key file stored in an encrypted zfs dataset cannot be used directly, so the pool must use <code>keyformat=password</code> and <code>keylocation=prompt</code>.
ZFS Event Daemon (zed) monitors events generated by the ZFS Kernel module and runs configured tasks. It can be configured to send an email when a pool scrub is finished or a disk has failed. [https://search.nixos.org/options?query=services.zfs.zed zed options]


The following example follows the remote unlocking with dropbear, but imports another pool also and prompts for unlocking (either when at the machine itself or when logging in remotely:
=== Option A: enable mail notifications without re-compliation ===


First, we need to configure a mail transfer agent, the program that sends email:
<syntaxhighlight lang="nix">
<syntaxhighlight lang="nix">
boot = {
{
  initrd.network = {
  programs.msmtp = {
    enable = true;
    enable = true;
    ssh = {
    setSendmail = true;
        enable = true;
    defaults = {
        port = 2222;  
      aliases = "/etc/aliases";
        hostECDSAKey = /run/keys/initrd-ssh-key;
      port = 465;
        authorizedKeys = [ "ssh-rsa AAAA..." ];
      tls_trust_file = "/etc/ssl/certs/ca-certificates.crt";
    };
      tls = "on";
    postCommands = ''
      auth = "login";
      zpool import tankXXX
      tls_starttls = "off";
      echo "zfs load-key -a; killall zfs" >> /root/.profile
    };
    '';
    accounts = {
  };
      default = {
};
        host = "mail.example.com";
</syntaxHighlight>
        passwordeval = "cat /etc/emailpass.txt";
        user = "user@example.com";
        from = "user@example.com";
      };
    };
  };
}
</syntaxhighlight>


When you login by SSH into dropbear or when you have physical access to the machine itself, you will be prompted to supply the unlocking password for your zroot and tankXXX pools.
Then, configure an alias for root account. With this alias configured, all mails sent to root, such as cron job results and failed sudo login events, will be redirected to the configured email account.


== Regarding installation of NixOS to ZFS direct from installation media ==
<syntaxhighlight lang="bash">
 
tee -a /etc/aliases <<EOF
* Since [https://github.com/NixOS/nixpkgs/pull/51090 18.09] the installation iso comes with zfs by default again.
root: user@example.com
* For older versions it is still possible to enable it in the existing ISO at runtime adding:
EOF
</syntaxhighlight>


Finally, override default zed settings with a custom one:
<syntaxhighlight lang="nix">
<syntaxhighlight lang="nix">
{
{
   boot.supportedFilesystems = [ "zfs" ];
   services.zfs.zed.settings = {
}
    ZED_DEBUG_LOG = "/tmp/zed.debug.log";
</syntaxHighlight>
    ZED_EMAIL_ADDR = [ "root" ];
    ZED_EMAIL_PROG = "${pkgs.msmtp}/bin/msmtp";
    ZED_EMAIL_OPTS = "@ADDRESS@";


to the iso's configuration.nix followed by a <code>nixos-rebuild switch</code> ([https://discourse.nixos.org/t/install-report-from-new-user/1390/9 source])
    ZED_NOTIFY_INTERVAL_SECS = 3600;
    ZED_NOTIFY_VERBOSE = true;


    ZED_USE_ENCLOSURE_LEDS = true;
    ZED_SCRUB_AFTER_RESILVER = true;
  };
  # this option does not work; will return error
  services.zfs.zed.enableMail = false;
}
</syntaxhighlight>


== ZFS Trim Support for SSDs ==
You can now test this by performing a scrub
<syntaxhighlight lang="console">
# zpool scrub $pool
</syntaxhighlight>


ZFS 0.8 now also features trim support for SSDs.
=== Option B: Rebuild ZFS with mail support ===
The <code>zfs</code> package can be rebuilt with mail features. However, please note that this will cause Nix to recompile the entire ZFS package on the computer, and on every Kernel update, which could be very time-consuming on lower-end NAS systems.


=== How to use ZFS trimming ===
An alternative solution that does not involve recompliation can be found above.


ZFS trimming works on one or more zpools and will trim each ssd inside it. There are two modes of it. One mode will manually trim the specified pool and the other will auto-trim pools. However the main difference is, that auto-trim will skip ranges that it considers too small while manually issued trim will trim all ranges.
The following override is needed as <code>zfs</code>is implicitly used in partition mounting:


To manually start trimming of a zpool run: <code>zpool trim tank</code>.
<syntaxhighlight lang="nix">
Since [https://github.com/NixOS/nixpkgs/pull/65331 PR-65331] this can be also done periodically (by default once a week) by setting <code>services.zfs.trim.enabled = true</code>.
nixpkgs.config.packageOverrides = pkgs: {
  zfsStable = pkgs.zfsStable.override { enableMail = true; };
};
</syntaxhighlight>


To set a pool for auto-trim run: <code>zpool set autotrim=on tank</code>
A mail sender like [[msmtp]] or [[postfix]] is required.


To check the status of the manual trim, you can just run <code>zpool status -t</code>
A minimal, testable ZED configuration example:


To see the effects of trimming, you can run <code>zpool iostat -r</code> and <code>zpool iostat -w</code>
<syntaxhighlight lang="nix">
 
services.zfs.zed.enableMail = true;
To see whether auto-trimming works, just run <code>zpool iostat -r</code> note the results and run it later again. The trim entries should change.
services.zfs.zed.settings = {
  ZED_EMAIL_ADDR = [ "root" ];
  ZED_NOTIFY_VERBOSE = true;
};
</syntaxhighlight>


For further information read the [https://github.com/zfsonlinux/zfs/pull/8419 PR description].
Above, <code>ZED_EMAIL_ADDR</code> is set to <code>root</code>, which most people will have an alias for in their mailer. You can change it to directly mail you: <code>ZED_EMAIL_ADDR = [ "you@example.com" ];</code>


== Need more info? ==
ZED pulls in <code>mailutils</code> and runs <code>mail</code> by default, but you can override it with <code>ZED_EMAIL_PROG</code>. If using msmtp, you may need <code>ZED_EMAIL_PROG = "${pkgs.msmtp}/bin/msmtp";</code>.


Feel free to ask your questions on the NixOS mailing list or the IRC channel: http://nixos.org/development/
You can customize the mail command with <code>ZED_EMAIL_OPTS</code>. For example, if your upstream mail server requires a certain FROM address: <code>ZED_EMAIL_OPTS = "-r 'noreply@example.com' -s '@SUBJECT@' @ADDRESS@";</code>


[[Category:Guide]]
[[Category:Guide]]

Latest revision as of 10:57, 6 November 2024

ZFS (wikipedia:en:ZFS), also known as OpenZFS (wikipedia:en:OpenZFS), is a modern filesystem which is well supported on NixOS. Besides the zfs package (ZFS Filesystem Linux Kernel module) [1] itself, there are many packages in the ZFS ecosystem available.

ZFS integrates into NixOS via the boot.zfs[2] and service.zfs[3] options.

Limitations

Latest Kernel compatible with ZFS

ZFS often does not support the latest Kernel versions. It is recommended to use an LTS Kernel version whenever possible; the NixOS default Kernel is generally suitable. See Linux Kernel for more information about configuring a specific Kernel version.

If your config specifies a Kernel version that is not officially supported by upstream ZFS, the ZFS module will fail to evaluate with an error that the ZFS package is "broken".

Selecting the latest ZFS-compatible Kernel
Warning: This will often result in the Kernel version going backwards as Kernel versions become end-of-life and are removed from Nixpkgs. If you need more control over the Kernel version due to hardware requirements, consider simply pinning a specific version rather than calculating it as below.

To use the latest ZFS-compatible Kernel currently available, the following configuration may be used.

{
  config,
  lib,
  pkgs,
  ...
}:

let
  zfsCompatibleKernelPackages = lib.filterAttrs (
    name: kernelPackages:
    (builtins.match "linux_[0-9]+_[0-9]+" name) != null
    && (builtins.tryEval kernelPackages).success
    && (!kernelPackages.${config.boot.zfs.package.kernelModuleAttribute}.meta.broken)
  ) pkgs.linuxKernel.packages;
  latestKernelPackage = lib.last (
    lib.sort (a: b: (lib.versionOlder a.kernel.version b.kernel.version)) (
      builtins.attrValues zfsCompatibleKernelPackages
    )
  );
in
{
  # Note this might jump back and forth as kernels are added or removed.
  boot.kernelPackages = latestKernelPackage;
}
Using unstable, pre-release ZFS
Warning: Pre-release ZFS versions may be less well-tested, and may have critical bugs that may cause data loss.

In some cases, a pre-release version of ZFS may be available that supports a newer Kernel. Use it with boot.zfs.package = pkgs.zfs_unstable;.

Partial support for swap on ZFS

ZFS does not support swapfiles. swap devices can be used instead. Additionally, hibernation is disabled by default due to a high risk of data corruption. Note that even if that pull request is merged, it does not fully mitigate the risk. If you wish to enable hibernation regardless and made sure that swapfiles on ZFS are not used, set boot.zfs.allowHibernation = true.

Zpool not found

If NixOS fails to import the zpool on reboot, you may need to add boot.zfs.devNodes = "/dev/disk/by-path"; or boot.zfs.devNodes = "/dev/disk/by-partuuid"; to your configuration.nix file.

The differences can be tested by running zpool import -d /dev/disk/by-id when none of the pools are discovered, eg. a live iso.

Declarative mounting of ZFS datasets

When using legacy mountpoints (created with e.g. zfs create -o mountpoint=legacy) mountpoints must be specified with fileSystems."/mount/point" = {};. ZFS native mountpoints are not managed as part of the system configuration but better support hibernation with a separate swap partition. This can lead to conflicts if ZFS mount service is also enabled for the same datasets. Disable it with systemd.services.zfs-mount.enable = false;.

Guides

OpenZFS Documentation for installing

Warning: This guide is not endorsed by NixOS and some features like immutable root do not have upstream support and could break on updates. If an issue arises while following this guide, please consult the guides support channels.

One guide for a NixOS installation with ZFS is maintained at OpenZFS Documentation (Getting Started for NixOS)

It is about:

It is not about:

  • Giving understandable, easy to follow instructions which are close to the standard installation guide
  • Integrating ZFS into your existing config

Simple NixOS ZFS on root installation

Start from here in the NixOS manual: [1]. Under manual partitioning [2] do this instead:

Partition your disk with your favorite partition tool

We need the following partitions:

  • 1G for boot partition with "boot" as the partition label (also called name in some tools) and ef00 as partition code
  • 4G for a swap partition with "swap" as the partition label and 8200 as partition code. We will encrypt this with a random secret on each boot.
  • The rest of disk space for zfs with "root" as the partition label and 8300 as partition code (default code)

Reason for swap partition: ZFS does use a caching mechanism that is different from the normal Linux cache infrastructure. In low-memory situations, ZFS therefore might need a bit longer to free up memory from its cache. The swap partition will help with that.

Example with gdisk:

sudo gdisk /dev/nvme0n1
GPT fdisk (gdisk) version 1.0.10
...
# boot partition
Command (? for help): n
Partition number (1-128, default 1): 
First sector (2048-1000215182, default = 2048) or {+-}size{KMGTP}: 
Last sector (2048-1000215182, default = 1000215175) or {+-}size{KMGTP}: +1G
Current type is 8300 (Linux filesystem)
Hex code or GUID (L to show codes, Enter = 8300): ef00
Changed type of partition to 'EFI system partition'

# Swap partition
Command (? for help): n
Partition number (2-128, default 2): 
First sector (2099200-1000215182, default = 2099200) or {+-}size{KMGTP}: 
Last sector (2099200-1000215182, default = 1000215175) or {+-}size{KMGTP}: +4G
Current type is 8300 (Linux filesystem)
Hex code or GUID (L to show codes, Enter = 8300): 8200
Changed type of partition to 'Linux swap'

# root partition
Command (? for help): n
Partition number (3-128, default 3): 
First sector (10487808-1000215182, default = 10487808) or {+-}size{KMGTP}: 
Last sector (10487808-1000215182, default = 1000215175) or {+-}size{KMGTP}: 
Current type is 8300 (Linux filesystem)
Hex code or GUID (L to show codes, Enter = 8300): 
Changed type of partition to 'Linux filesystem'

# write changes
Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING
PARTITIONS!!

Do you want to proceed? (Y/N): y
OK; writing new GUID partition table (GPT) to /dev/nvme0n1.
The operation has completed successfully.

Final partition table

Number  Start (sector)    End (sector)  Size       Code  Name
   1            2048         2099199   1024.0 MiB  EF00  EFI system partition
   2         2099200        10487807   4.0 GiB     8200  Linux swap
   3        10487808      1000215175   471.9 GiB   8300  Linux filesystem

Let's use variables from now on for simplicity. Get the device ID in /dev/disk/by-id/, in our case here it is nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O

BOOT=/dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part1
SWAP=/dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part2
DISK=/dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part3

Make a ZFS pool with encryption and mount points

Note: zpool config can significantly affect performance (especially the ashift option) so you may want to do some research. The ZFS tuning cheatsheet or ArchWiki is a good place to start.

zpool create -O encryption=on -O keyformat=passphrase -O keylocation=prompt -O compression=zstd -O mountpoint=none -O xattr=sa -O acltype=posixacl -o ashift=12 zpool $DISK
# enter the password to decrypt the pool at boot
Enter new passphrase:
Re-enter new passphrase:

# Create datasets
zfs create zpool/root
zfs create zpool/nix
zfs create zpool/var
zfs create zpool/home

mkdir -p /mnt
mount -t zfs zpool/root /mnt -o zfsutil
mkdir /mnt/nix /mnt/var /mnt/home

mount -t zfs zpool/nix /mnt/nix -o zfsutil
mount -t zfs zpool/var /mnt/var -o zfsutil
mount -t zfs zpool/home /mnt/home -o zfsutil

Output from zpool status:

zpool status
  pool: zpool
 state: ONLINE
...
config:

	NAME                               STATE     READ WRITE CKSUM
	zpool                              ONLINE       0     0     0
	  nvme-eui.0025384b21406566-part2  ONLINE       0     0     0

Format boot partition with FAT as filesystem

mkfs.fat -F 32 -n boot $BOOT

Enable swap

mkswap -L swap $SWAP
swapon $SWAP

Installation

  1. Mount boot
mkdir -p /mnt/boot
mount $BOOT /mnt/boot

# Generate the nixos config
nixos-generate-config --root /mnt
...
writing /mnt/etc/nixos/hardware-configuration.nix...
writing /mnt/etc/nixos/configuration.nix...
For more hardware-specific settings, see https://github.com/NixOS/nixos-hardware.

Now edit the configuration.nix that was just created in /mnt/etc/nixos/configuration.nix and make sure to have at least the following content in it.

{
...
  # Boot loader config for configuration.nix:
  boot.loader.systemd-boot.enable = true;

  # for local disks that are not shared over the network, we don't need this to be random
  networking.hostId = "8425e349";
...

Now check the hardware-configuration.nix in /mnt/etc/nixos/hardware-configuration.nix and add whats missing e.g. options = [ "zfsutil" ] for all filesystems except boot and randomEncryption = true; for the swap partition. Also change the generated swap device to the partition we created e.g. /dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part2 in this case and /dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part1 for boot.

...
  fileSystems."/" = { 
    device = "zpool/root";
    fsType = "zfs";
    # the zfsutil option is needed when mounting zfs datasets without "legacy" mountpoints
    options = [ "zfsutil" ];
  };

  fileSystems."/nix" = { 
    device = "zpool/nix";
    fsType = "zfs";
    options = [ "zfsutil" ];
  };

  fileSystems."/var" = { 
    device = "zpool/var";
    fsType = "zfs";
    options = [ "zfsutil" ];
  };

  fileSystems."/home" = {
    device = "zpool/home";
    fsType = "zfs";
    options = [ "zfsutil" ];
  };

  fileSystems."/boot" = { 
   device = "/dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part1";
   fsType = "vfat";
  };

  swapDevices = [{
    device = "/dev/disk/by-id/nvme-SKHynix_HFS512GDE9X081N_FNB6N634510106K5O-part2";
    randomEncryption = true;
  }];
}

Now you may install NixOS with nixos-install.

Importing on boot

If you create a zpool, it will not be imported on the next boot unless you either add the zpool name to boot.zfs.extraPools:

## In /etc/nixos/configuration.nix:
boot.zfs.extraPools = [ "zpool_name" ];

or if you are using legacy mountpoints, add a fileSystems entry and NixOS will automatically detect that the pool needs to be imported:

## In /etc/nixos/configuration.nix:
fileSystems."/mount/point" = {
  device = "zpool_name";
  fsType = "zfs";
};

Zpool created with bus-based disk names

If you used bus-based disk names in the zpool create command, e.g., /dev/sda, NixOS may run into issues importing the pool if the names change. Even if the pool is able to be mounted (with boot.zfs.devNodes = "/dev/disk/by-partuuid"; set), this may manifest as a FAULTED disk and a DEGRADED pool reported by zpool status. The fix is to re-import the pool using disk IDs:

# zpool export zpool_name
# zpool import -d /dev/disk/by-id zpool_name

The import setting is reflected in /etc/zfs/zpool.cache, so it should persist through subsequent boots.

Zpool created with disk IDs

If you used disk IDs to refer to disks in the zpool create command, e.g., /dev/disk/by-id, then NixOS may consistently fail to import the pool unless boot.zfs.devNodes = "/dev/disk/by-id" is also set.

Mount datasets at boot

zfs-mount service is enabled by default on NixOS 22.05.

To automatically mount a dataset at boot, you only need to set canmount=on and mountpoint=/mount/point on the respective datasets.

Changing the Adaptive Replacement Cache size

To change the maximum size of the ARC to (for example) 12 GB, add this to your NixOS configuration:

boot.kernelParams = [ "zfs.zfs_arc_max=12884901888" ];

Tuning other parameters

To tune other attributes of ARC, L2ARC or of ZFS itself via runtime modprobe config, add this to your NixOS configuration (keys and values are examples only!):

    boot.extraModprobeConfig = ''
      options zfs l2arc_noprefetch=0 l2arc_write_boost=33554432 l2arc_write_max=16777216 zfs_arc_max=2147483648
    '';

You can confirm whether any specified configuration/tuning got applied via commands like arc_summary and arcstat -a -s " ".

Automatic scrubbing

Regular scrubbing of ZFS pools is recommended and can be enabled in your NixOS configuration via:

services.zfs.autoScrub.enable = true;

You can tweak the interval (defaults to once a week) and which pools should be scrubbed (defaults to all).

Remote unlock

Unlock encrypted ZFS via SSH on boot

Note: As of 22.05, rebuilding your config with the below directions may result in a situation where, if you want to revert the changes, you may need to do some pretty hairy nix-store manipulation to be able to successfully rebuild, see https://github.com/NixOS/nixpkgs/issues/101462#issuecomment-1172926129

In case you want unlock a machine remotely (after an update), having an ssh service in initrd for the password prompt is handy:

boot = {
  initrd.network = {
    # This will use udhcp to get an ip address.
    # Make sure you have added the kernel module for your network driver to `boot.initrd.availableKernelModules`, 
    # so your initrd can load it!
    # Static ip addresses might be configured using the ip argument in kernel command line:
    # https://www.kernel.org/doc/Documentation/filesystems/nfs/nfsroot.txt
    enable = true;
    ssh = {
      enable = true;
      # To prevent ssh clients from freaking out because a different host key is used,
      # a different port for ssh is useful (assuming the same host has also a regular sshd running)
      port = 2222; 
      # hostKeys paths must be unquoted strings, otherwise you'll run into issues with boot.initrd.secrets
      # the keys are copied to initrd from the path specified; multiple keys can be set
      # you can generate any number of host keys using 
      # `ssh-keygen -t ed25519 -N "" -f /path/to/ssh_host_ed25519_key`
      hostKeys = [ /path/to/ssh_host_rsa_key ];
      # public ssh key used for login
      authorizedKeys = [ "ssh-rsa AAAA..." ];
    };
  };
};
  • In order to use DHCP in the initrd, network manager must not be enabled and networking.useDHCP = true; must be set.
  • If your network card isn't started, you'll need to add the according Kernel module to the Kernel and initrd as well, e.g.
    boot.kernelModules = [ "r8169" ];
    boot.initrd.kernelModules = [ "r8169" ];
    

After that you can unlock your datasets using the following ssh command:

ssh -p 2222 root@host "zpool import -a; zfs load-key -a && killall zfs"

Alternatively you could also add the commands as postCommands to your configuration.nix, then you just have to ssh into the initrd:

boot = {
  initrd.network = {
    postCommands = ''
    # Import all pools
    zpool import -a
    # Or import selected pools
    zpool import pool2
    zpool import pool3
    zpool import pool4
    # Add the load-key command to the .profile
    echo "zfs load-key -a; killall zfs" >> /root/.profile
    '';
  };
};

After that you can unlock your datasets using the following ssh command:

ssh -p 2222 root@host

Reservations

On ZFS, the performance will deteriorate significantly when more than 80% of the available space is used. To avoid this, reserve disk space beforehand.

To reserve space create a new unused dataset that gets a guaranteed disk space of 10GB.

# zfs create -o refreservation=10G -o mountpoint=none zroot/reserved

Auto ZFS trimming

services.zfs.trim.enable = true;.

This will periodically run zpool trim. Note that this is different from the autotrim pool property. For further information, see the zpool-trim and zpoolprops man pages.

Take snapshots automatically

See services.sanoid section in man configuration.nix.

NFS share

With sharenfs property, ZFS has build-in support for generating /etc/exports.d/zfs.exports file, which in turn is processed by NFS service automatically.

Warning: If you are intending on defining an IPv6 subnet as part of your sharenfs rule, as of ZFS 2.0.6 (2021-09-23) please note that due to a bug in openzfs your rule will not correctly apply, and may result in a security vulnerability (CVE-2013-20001). A fix has been implemented in the next yet-to-be-released upstream version - openzfs/zfs#11939

To enable NFS share on a dataset, only two steps are needed:

First, enable NFS service:

services.nfs.server.enable = true;

Only this line is needed. Configure firewall if necessary, as described in NFS article.

Then, set sharenfs property:

zfs set sharenfs="ro=192.168.1.0/24,all_squash,anonuid=70,anongid=70" rpool/myData

For more options, see man 5 exports.

Todo: sharesmb property for Samba.

Mail notifications (ZFS Event Daemon)

ZFS Event Daemon (zed) monitors events generated by the ZFS Kernel module and runs configured tasks. It can be configured to send an email when a pool scrub is finished or a disk has failed. zed options

Option A: enable mail notifications without re-compliation

First, we need to configure a mail transfer agent, the program that sends email:

{
  programs.msmtp = {
    enable = true;
    setSendmail = true;
    defaults = {
      aliases = "/etc/aliases";
      port = 465;
      tls_trust_file = "/etc/ssl/certs/ca-certificates.crt";
      tls = "on";
      auth = "login";
      tls_starttls = "off";
    };
    accounts = {
      default = {
        host = "mail.example.com";
        passwordeval = "cat /etc/emailpass.txt";
        user = "user@example.com";
        from = "user@example.com";
      };
    };
  };
}

Then, configure an alias for root account. With this alias configured, all mails sent to root, such as cron job results and failed sudo login events, will be redirected to the configured email account.

tee -a /etc/aliases <<EOF
root: user@example.com
EOF

Finally, override default zed settings with a custom one:

{
  services.zfs.zed.settings = {
    ZED_DEBUG_LOG = "/tmp/zed.debug.log";
    ZED_EMAIL_ADDR = [ "root" ];
    ZED_EMAIL_PROG = "${pkgs.msmtp}/bin/msmtp";
    ZED_EMAIL_OPTS = "@ADDRESS@";

    ZED_NOTIFY_INTERVAL_SECS = 3600;
    ZED_NOTIFY_VERBOSE = true;

    ZED_USE_ENCLOSURE_LEDS = true;
    ZED_SCRUB_AFTER_RESILVER = true;
  };
  # this option does not work; will return error
  services.zfs.zed.enableMail = false;
}

You can now test this by performing a scrub

# zpool scrub $pool

Option B: Rebuild ZFS with mail support

The zfs package can be rebuilt with mail features. However, please note that this will cause Nix to recompile the entire ZFS package on the computer, and on every Kernel update, which could be very time-consuming on lower-end NAS systems.

An alternative solution that does not involve recompliation can be found above.

The following override is needed as zfsis implicitly used in partition mounting:

nixpkgs.config.packageOverrides = pkgs: {
  zfsStable = pkgs.zfsStable.override { enableMail = true; };
};

A mail sender like msmtp or postfix is required.

A minimal, testable ZED configuration example:

services.zfs.zed.enableMail = true;
services.zfs.zed.settings = {
  ZED_EMAIL_ADDR = [ "root" ];
  ZED_NOTIFY_VERBOSE = true;
};

Above, ZED_EMAIL_ADDR is set to root, which most people will have an alias for in their mailer. You can change it to directly mail you: ZED_EMAIL_ADDR = [ "you@example.com" ];

ZED pulls in mailutils and runs mail by default, but you can override it with ZED_EMAIL_PROG. If using msmtp, you may need ZED_EMAIL_PROG = "${pkgs.msmtp}/bin/msmtp";.

You can customize the mail command with ZED_EMAIL_OPTS. For example, if your upstream mail server requires a certain FROM address: ZED_EMAIL_OPTS = "-r 'noreply@example.com' -s '@SUBJECT@' @ADDRESS@";