Systemd/networkd: Difference between revisions
imported>Mweinelt →Limitations: Clarify, add examples |
imported>Mweinelt |
||
Line 82: | Line 82: | ||
** Executed by udev and only applied on boot | ** Executed by udev and only applied on boot | ||
* {{Nixos:option|systemd.network.netdevs}} | * {{Nixos:option|systemd.network.netdevs}} | ||
** | ** Does not modify properties (e.g., MTU, VLAN ID, VXLAN ID, Wireguard Peers) of existing netdevs | ||
*** https://github.com/systemd/systemd/issues/9627 | *** https://github.com/systemd/systemd/issues/9627 | ||
Revision as of 23:46, 28 March 2023
Networkd is the network configuration component of the systemd software suite. It is well integrated into NixOS below systemd.network
and should be preferred over networking.interfaces
options for most use cases, since it receives far superior maintenance.
Configuration for networkd is split into three sections.
systemd.network.links
reconfigures existing network devices- https://www.freedesktop.org/software/systemd/man/systemd.link.html
- actually implemented by udev, not networkd
systemd.network.netdevs
creates virtual network devicessystemd.network.networks
configures network devices
In most simple scenarios configuring existing network devices is what you want to do.
Basics
When to use
Use systemd-networkd for setups that rely on static configuration, that doesn't change much during its lifetime, that does not require varying profiles for a single interface. Common examples are:
- Servers/Routers
- Always-On VPN Tunnels
Following that logic, it is less suitable to
- Varying WLAN profiles
- Selectively used VPN tunnels
These use cases are better served by NetworkManager and its various frontends, that provides a better integrated user experience for various desktop systems.
Enabling
To be able to use networkd configuration, it needs to be enabled first.
systemd.network.enable = true;
Some guides will mention the networking.useNetworkd
option, which
offers translation of some networking.interfaces
and
networking.useDHCP
options into networkd. If you can write your complete
network setup in native networkd configuration, you should stay away from that option.
Configuring
The configuration of networkd happens through one or multiple configuration files per
interface stored in /etc/systemd/network
.
The following declaration in your NixOS configuration
systemd.network.networks."10-lan" = {
matchConfig.Name = "lan";
networkConfig.DHCP = "ipv4";
};
renders the following network configuration:
/etc/systemd/network/10-lan.network
[Match]
Name=lan
[Network]
DHCP=ipv4
Note that we usually prefix the configuration file with a number. This can be important,
because networkd collects all available configuration files, then sorts them alphabetically,
and uses the first match for each interface as its configuration. This happens separately
for .link
, .netdev
and .network
files, so
that you can have one configuration of each type per interface.
Limitations
Some limitations might be surprising, so it is probably helpful to get them out of the way early.
systemd.network.links
- Executed by udev and only applied on boot
systemd.network.netdevs
- Does not modify properties (e.g., MTU, VLAN ID, VXLAN ID, Wireguard Peers) of existing netdevs
network-online.target
While network.target
only requires the network management stack
to be up, which means it does not care about network interfaces being configured,
the network-online.target
waits until a defined set of network
interfaces are in a state, that by its configuration is considered online.
When networkd is enabled, the network-online.target
is implemented
through the systemd-networkd-wait-online.service
, which makes
sure interfaces configured through networkd are in their expected operational state.
The current operational state of network interfaces can be learned from networkctl
.
❯ networkctl
IDX LINK TYPE OPERATIONAL SETUP
1 lo loopback carrier unmanaged
2 enp10s0 ether routable unmanaged
3 wlp9s0 wlan no-carrier unmanaged
For most network interfaces that will mean that they have routable
network connectivity, but in more complex setups some links may be content with more
simple states like carrier
or enslaved
. Interfaces that
are managed by networkd, but not always in use, shouldn't be required for
network-online.target
systemd.network."50-enp3s0" = {
matchConfig.Name = "enp3s0";
# acquire a DHCP lease on link up
networkConfig.DHCP = "yes";
# this port is not always connected and not required to be online
linkConfig.RequiredForOnline = "no";
};
Note that the default value for linkConfig.RequiredForOnline
is unexpectedly
"yes"
, which often leads to a failing network-online.target
.
Setting individual interfaces to "no"
is a perfectly valid choice
and should be considered, before disabling the systemd-networkd-wait-online.service
entirely, because a working network-online.target
is required for some
services to properly start without race conditions.
Recommended documentation:
- Network Configuration Synchronization Points
- RequiredForOnline=
- List of operational interface states
Examples
Examples should be concise and give proper hints on how to achieve a reliably working network-online.target
.
DHCP/RA
Common scenario for dynamic configuration, DHCP for IPv4 and router advertisements for IPv6 connectivity. Make network-online.target
wait until addresses and routes are configured.
systemd.network.networks."10-wan" = {
matchConfig.Name = "enp1s0";
networkConfig = {
DHCP = "ipv4";
IPv6AcceptRA = true;
};
# making routing on this interface a dependency for network-online.target
linkConfig.RequiredForOnline = "routable";
};
Static
Apply a static address and routing configuration onto enp1s0
.
When the gateway is not on the same prefix as the address configured, as is customary on some cloud providers, you usually also need to set GatewayOnLink
, to indicate the gateway is directly reachable on the interface.
systemd.network.networks."10-wan" = {
# match the interface by name
matchConfig.Name = "enp1s0";
address = [
# configure addresses including subnet mask
"192.0.2.100/24"
"2001:DB8::2/64"
];
routes = [
# create default routes for both IPv6 and IPv4
{ routeConfig.Gateway = "fe80::1"; }
{ routeConfig.Gateway = "192.0.2.1"; }
# or when the gateway is not on the same network
{ routeConfig = {
Gateway = "172.31.1.1";
GatewayOnLink = true;
}; }
];
# make the routes on this interface a dependency for network-online.target
linkConfig.RequiredForOnline = "routable";
};
VLAN
VLANs can be configured on top of hardlinks as well as virtual links, like bonding interfaces. They provide separate logical networks over physical links.
In this example we tag two VLANs with Ids 10 and 20 on a physical link enp1s0
. The VLAN interfaces become available vlan10
and vlan20
and can receive additional configuration.
systemd.network = {
netdevs = {
"20-vlan10" = {
netdevConfig = {
Kind = "vlan";
Name = "vlan10";
};
vlanConfig.Id = 10;
};
"20-vlan20" = {
netdevConfig = {
Kind = "vlan";
Name = "vlan20";
};
vlanConfig.Id = 20;
};
};
networks = {
"30-enp1s0" = {
matchConfig.Name = "enp1s0";
# tag vlan on this link
vlan = [
vlan10
vlan20
];
};
"40-vlan10" = {
matchConfig.Name = "vlan10";
# add relevant configuration here
};
"40-vlan20" = {
matchConfig.Name = "vlan20";
# add relevant configuration here
};
};
Bonding
Given two hardlinks enp2s0
and enp3s0
create a virtual bond0
interface using Dynamic LACP (802.3ad), hashing outgoing packets using a packet's Layer3/4 (OSI Layer) information.
systemd.network = {
netdevs = {
"10-bond0" = {
netdevConfig = {
Kind = "bond";
Name = "bond0";
};
bondConfig = {
Mode = "802.3ad";
TransmitHashPolicy = "layer3+4";
};
};
};
networks = {
"30-enp2s0" = {
matchConfig.Name = "enp2s0";
networkConfig.Bond = "bond0";
};
"30-enp3s0" = {
matchConfig.Name = "enp3s0";
networkConfig.Bond = "bond0";
};
"40-bond0" = {
matchConfig.Name = "bond0";
linkConfig = {
RequiredForOnline = "carrier";
};
networkConfig.LinkLocalAddressing = "no";
};
};
};
WireGuard
WireGuard can also be set up using systemd.network.netdevs
. More details can be found at WireGuard#Setting up WireGuard with systemd-networkd.
User configurations
This section allows references to actual user configurations. They show how individual configuration snippets get integrated as a whole and serve as real world examples.
When adding new links, please describe the primary features of your setup and against which NixOS version it was last updated.