NixOS on ARM: Difference between revisions

From NixOS Wiki
imported>Thinkofname
mNo edit summary
Add Radxa ROCK 4 to table (will add linked page next)
 
(187 intermediate revisions by 68 users not shown)
Line 1: Line 1:
ARM support for NixOS is a work-in-progress, but is progressing quickly.
<languages/>
<translate>
<!--T:1-->
<div style="font-size: 1.5rem; text-align: center;padding-bottom: 0.5rem;"><strong>NixOS supports 64-bit ARM.</strong></div>


The support varies depending on the architecture and the specific boards. The way the ARM integration is built into NixOS is by making generic builds the first-class citizens; as soon as there is upstream support for the board in the kernel and the bootloader, NixOS should work once updated to these versions. It is still possible, when needed, to build and use a customised bootloader and kernel for specific boards<sup>[[Talk:NixOS_on_ARM#NixOS_.22support.22_for_board-specific_kernels_or_bootloaders|[reference needed]]]</sup>. At this moment in time (early 2018) only AArch64 is planned for full support upstream. Though, neither armv6l or armv7l are being ignored, fixes are worked on and approved as needed; what's missing is support and upstream builds being maintained in binary form.
<!--T:2-->
The support level for ARM overall varies depending on the architecture and the specific ecosystems and boards.


== Supported devices ==
<!--T:3-->
The way the ARM integration is built into NixOS is by making '''generic builds the first-class citizens'''. This means that as soon as there is upstream support for the board in the kernel and platform firmware, NixOS should work once those are updated.


=== Upstream (NixOS) supported devices ===
<!--T:4-->
It is still possible, when needed, to build and use a customized platform firmware and kernel for specific boards<sup>[[Talk:NixOS_on_ARM#NixOS_.22support.22_for_board-specific_kernels_or_bootloaders|[reference needed]]]</sup>.


NixOS has support for these boards using AArch64 architecture on the nixpkgs-unstable and nixpkgs-18.03 channel.  
<!--T:5-->
At this moment in time (early 2024) '''only AArch64''' has full support upstream. With that said, neither armv6l or armv7l are being ignored, fixes are worked on and approved as needed. What's missing is support and builds being maintained in binary form. At the time of writing, no publicly available caches for armv6l or armv7l are available.<!-- please get in touch with samueldr on the NixOS on ARM channel if you want to share your own cache, before editing. We need to review the wording to make it crystal clear it's a user-provided cache. -->
 
<!--T:6-->
'''For images links, including UEFI install''', skip to the [[NixOS_on_ARM/Installation|Installation page]].
 
== Supported devices == <!--T:7-->
 
<!--T:8-->
Table legend:
* SoC - https://en.wikipedia.org/wiki/System_on_a_chip
* ISA - https://en.wikipedia.org/wiki/Instruction_set_architecture
 
=== Upstream (NixOS) supported devices === <!--T:9-->
 
<!--T:10-->
NixOS has support for these boards using AArch64 architecture on the nixpkgs-unstable and stable channel.
 
<!--T:11-->
Support for those board assumes as much is supported as Mainline Linux supports.
<!--
<!--
Order for the device table is:
Order for the device table is:
Line 13: Line 38:
  * By release date, chronological (older first).
  * By release date, chronological (older first).
-->
-->
<div class="table">
{|class="table"
{|class="table"
!width="2%"| Manufacturer
!width="2%"| Manufacturer
!width="2%"| Board
!width="2%"| Board
!width="2%"| SoC
!width="2%"| SoC
!width="2%"| ISA
!width="1%"| ISA
!width="2%"| CPU
!width="2%"| CPU
!width="2%"| RAM
!width="1%"| RAM
!width="2%"| Storage
!width="2%"| Storage
|-
|-
| Raspberry Pi Foundation
| Raspberry Pi Foundation
| [[NixOS_on_ARM/Raspberry_Pi|Raspberry Pi 3]]
| [[NixOS_on_ARM/Raspberry_Pi_3|Raspberry Pi 3]]
| Broadcom BCM2837
| Broadcom BCM2837
| AArch64 / ARMv7
| AArch64 / ARMv7
| 4× Cortex-A53 @ 1.2 GHz
| 4× Cortex-A53 @ 1.2 - 1.4 GHz
| 1 GB
| 1 GB
| SD/microSD
| SD/microSD
|-
| Raspberry Pi Foundation
| [[NixOS_on_ARM/Raspberry_Pi 4|Raspberry Pi 4]]
| Broadcom BCM2711
| AArch64 / ARMv7
| 4× Cortex-A72 @ 1.5 - 1.8 GHz
| 1-8 GB
| microSD, eMMC
|}
|}
</div>
=== Community supported devices ===
=== Community supported devices ===


The installation images by '''@dezgeg''' should work on the following devices; follow the links for more details, like installation instructions and device-specific notes.
<!--T:12-->
These boards are not routinely verified as working.


<!--T:13-->
The baseline support level expected is “Just as much as mainline Linux and U-Boot supports them”, except if specified otherwise.
<!--
<!--
Order for the device table is:
Order for the device table is:
Line 39: Line 77:
  * By release date, chronological (older first).
  * By release date, chronological (older first).
-->
-->
<div class="table-responsive">
<div class="table">
{|class="table"
{| class="sortable table"
!width="2%"| Manufacturer
!width="2%"| Manufacturer
!width="2%"| Board
!width="2%"| Board
!width="2%"| SoC
!width="2%"| SoC
!width="2%"| ISA
!width="1%"| ISA
!width="2%"| CPU
!width="2%"| CPU
!width="2%"| RAM
!width="2%"| RAM
!width="2%"| Storage
!width="2%"| Storage
|-
| Apple
| [[NixOS_on_ARM/Apple Silicon Macs|Apple Silicon Macs]]
| M1/M1 Pro/M1 Max
| AArch64
| —
| —
| NVMe
|-
|-
| ASUS
| ASUS
| [[NixOS_on_ARM/Tinker Board|Tinker Board]]
| [[NixOS_on_ARM/ASUS Tinker Board|Tinker Board]]
| Rockchip RK3288
| Rockchip RK3288
| ARMv7
| ARMv7
Line 68: Line 114:
| [[NixOS_on_ARM/Banana Pi M64|Banana Pi M64]]
| [[NixOS_on_ARM/Banana Pi M64|Banana Pi M64]]
| Allwinner A64
| Allwinner A64
| ARMv8
| AArch64
| 4× Cortex-A53
| 4× Cortex-A53
| 2 GB
| 2 GB
| microSD, 8GB eMMc
| microSD, 8GB eMMc
|-
| Banana Pi BPI-M5
| [[NixOS_on_ARM/Banana Pi BPI-M5|Banana Pi BPI-M5]]
| Amlogic S905X3
| AArch64
| 4× Cortex-A55
| 4 GB LPDDR4
| microSD, 16G eMMC
|-
|-
| BeagleBoard.org
| BeagleBoard.org
| [[NixOS_on_ARM/BeagleBone_Black|BeagleBone Black]]
| [[NixOS_on_ARM/BeagleBone_Black|BeagleBone Black]]
| TI AM335x
| TI AM335x [https://git.beagleboard.org/beagleboard/beaglebone-black (src)]
| ARMv7
| ARMv7
| 1× Cortex-A8 @ 1 GHz
| 1× Cortex-A8 @ 1 GHz
Line 84: Line 138:
| [[NixOS_on_ARM/Firefly_AIO-3399C|AIO-3399C]]
| [[NixOS_on_ARM/Firefly_AIO-3399C|AIO-3399C]]
| Rockchip RK3399
| Rockchip RK3399
| AARCH64
| AArch64
| 2× Cortex-A72 @ 2.0 GHz, 4x Cortex-A53 @ 1.5 Ghz
| 2× Cortex-A72 @ 2.0 GHz, Cortex-A53 @ 1.5 Ghz
| 2/4 GB
| 2/4 GB
| 8/16 GB eMMC, microSD
| 8/16 GB eMMC, microSD
|-
| FriendlyElec
| [[NixOS_on_ARM/NanoPC-T4|NanoPC-T4]]
| Rockchip RK3399
| AArch64
| 2× Cortex-A72 @ 2.0 GHz, 4× Cortex-A53 @ 1.5 Ghz
| 4 GB
| 16 GB eMMC, microSD, NVMe
|-
| FriendlyElec
| [[NixOS_on_ARM/NanoPi-M4|NanoPi-M4]]
| Rockchip RK3399
| AArch64
| 2× Cortex-A72 @ 2.0 GHz, 4× Cortex-A53 @ 1.5 Ghz
| 4 GB
| optional eMMC, microSD
|-
| FriendlyElec
| [[NixOS_on_ARM/NanoPi-R6C|NanoPi-R6C]]
| Rockchip RK3588S
| AArch64
| 4× ARM Cortex-A76 @ 2.4 GHz, 4× Cortex-A55 @ 1.8 Ghz
| 4 GB / 8 GB
| optional eMMC, microSD, NVMe
|-
| Hardkernel
| [[NixOS_on_ARM/ODROID-HC1|ODROID-HC1 & ODROID-HC2]]
| Samsung Exynos 5422
| ARMv7
| 4× Cortex-A15 @ 2GHz, 4× Cortex-A7 @ 1.4GHz
| 2 GB
| microSD
|-
|-
| Hardkernel
| Hardkernel
Line 93: Line 179:
| Amlogic S905
| Amlogic S905
| AArch64
| AArch64
| 4 × Cortex-A53 @ 1.5GHz
| Cortex-A53 @ 1.5GHz
| 2 GB
| 2 GB
| eMMC, microSD
|-
| Hardkernel
| [[NixOS_on_ARM/ODROID-HC4|ODROID-HC4]]
| Amlogic S905X3
| AArch64
| 4× Cortex-A55 @ 1.8GHz
| 4 GB
| microSD, SATA
|-
|Kosagi
|[[NixOS on ARM/Kosagi Novena|Kosagi Novena]]
|i.MX6
|ARMv7
|4× Cortex-A9 @ 1.2 GHz
|4 GB
|microSD, SATA
|-
| Libre Computer
| [[NixOS_on_ARM/Libre_Computer_ROC-RK3399-PC|ROC-RK3399-PC]]
| Rockchip RK3399
| AArch64
| 2× Cortex-A72 @ 2.0 GHz, 4× Cortex-A53 @ 1.5 Ghz
| 4 GB
| eMMC, microSD, NVMe
|-
| Libre Computer
| [[NixOS_on_ARM/Libre_Computer_ROC-RK3328-CC|ROC-RK3328-CC]]
| Rockchip RK3328
| AArch64
| 4× Cortex-A53 @ 1.4GHz
| 4 GB
| eMMC, microSD
|-
| Libre Computer
| [[NixOS_on_ARM/Libre_Computer_AML-S905X-CC-V2|AML-S905X-CC-V2]]
| Amlogic S905X
| AArch64
| 4× Cortex-A53 @ 1.512 GHz
| 1/2GB
| eMMC, microSD
| eMMC, microSD
|-
|-
Line 112: Line 238:
| 2 GB
| 2 GB
| 16 GB eMMC, SD, SATA
| 16 GB eMMC, SD, SATA
|-
| NXP
| [https://github.com/NiklasGollenstede/nixos-imx/ i.MX 8M Plus EVK]
| i.MX 8M Plus
| AArch64
| 4× Cortex-A53 @ 1.8 Ghz
| 6 GB
| 32 GB eMMC, microSD
|-
| NXP
| [https://github.com/gangaram-tii/nixos-imx8mq/ i.MX 8M Quad EVK]
| i.MX 8M Quad
| AArch64
| 4× Cortex-A53 @ 1.5 Ghz + 1× Cortex-M4
| 3 GB
| 16 GB eMMC, microSD
|-
| OLIMEX
| [[NixOS_on_ARM/OLIMEX_Teres-A64|Teres-A64]]
| AllWinner A64
| AArch64
| 4× Cortex-A53 @ 1.1 GHz
| 2GB
| 16 GB eMMC, microSD
|-
|-
| Orange Pi
| Orange Pi
Line 136: Line 286:
| 1 GB
| 1 GB
| SD/microSD + 8GB eMMC
| SD/microSD + 8GB eMMC
|-
| Orange Pi
| [[NixOS_on_ARM/Orange_Pi_Zero2_H616|Orange Pi Zero2 (H616)]]
| Allwinner H616
| AArch64
| 4× Cortex-A53 @ 1.2 GHz
| 1 GB
| SD/microSD + 2MB SPI Flash
|-
| Orange Pi
| [[NixOS_on_ARM/Orange_Pi_R1_Plus_LTS|Orange Pi R1 Plus LTS]]
| Rockchip RK3328
| AArch64
| 4× Cortex-A53 @ 1.5 GHz
| 1 GB
| microSD
|-
| Orange Pi
| [[NixOS_on_ARM/Orange_Pi_5|Orange Pi 5]]
| Rockchip RK3588s
| AArch64
| 4× Cortex-A76 @ 2.4GHz, 4×Cortex-A55 @ 1.8 GHz
| 4/8/16 GB
| microSD, NVMe
|-
| Orange Pi
| [[NixOS_on_ARM/Orange_Pi_5_Plus|Orange Pi 5 Plus]]
| Rockchip RK3588
| AArch64
| 4× Cortex-A76 @ 2.4GHz, 4×Cortex-A55 @ 1.8 GHz
| 4/8/16 GB
| eMMC, microSD, NVMe
|-
|-
| PINE64
| PINE64
Line 141: Line 323:
| Allwinner R18
| Allwinner R18
| AArch64
| AArch64
| 4× Cortex-A53 @ ? GHz
| 4× Cortex-A53 @ ? GHz
| 2 GB
| 2 GB
| SD/microSD & eMMC
| microSD & eMMC
|-
| PINE64
| [[NixOS_on_ARM/PINE64_Pinebook|Pinebook]]
| Allwinner A64
| AArch64
| 4× Cortex-A53 @ ? Ghz
| 2 GB
| microSD & eMMC
|-
| PINE64
| [[NixOS_on_ARM/PINE64_Pinebook_Pro|Pinebook Pro]]
| Rockchip RK3399
| AArch64
| 2× Cortex-A72 @ 2.0 GHz, 4× Cortex-A53 @ 1.5 Ghz
| 4 GB
| microSD & eMMC
|-
|-
| PINE64
| PINE64
Line 149: Line 347:
| Rockchip RK3328
| Rockchip RK3328
| AArch64
| AArch64
| 4x Cortex-A53 @ 1.5 GHz
| Cortex-A53 @ 1.5 GHz
| 1/2/4 GB
| 1/2/4 GB
| microSD/eMMC
| microSD/eMMC
Line 157: Line 355:
| Rockchip RK3399
| Rockchip RK3399
| AArch64
| AArch64
| 2× Cortex-A72 @ 2.0 GHz, 4x Cortex-A53 @ 1.5 Ghz
| 2× Cortex-A72 @ 2.0 GHz, Cortex-A53 @ 1.5 Ghz
| 2/4 GB
| 2/4 GB
| microSD/eMMC
| microSD/eMMC
|-
| Clockworkpi
| [[NixOS_on_ARM/Clockworkpi_A06_uConsole|uConsole A06]]
| Rockchip RK3399
| AArch64
| 2× Cortex-A72 @ 2.0 GHz, 4× Cortex-A53 @ 1.5 Ghz
| 4 GB
| microSD
|-
| Radxa
| [[NixOS on ARM/Radxa ROCK 4|ROCK 4]]
| Rockchip RK3399
| AArch64
| 2× Cortex-A72, 4×Cortex-A53
| 2/4 GB
| eMMC, microSD, NVMe via expansion board
|-
| Radxa
| [[NixOS on ARM/Radxa ROCK5 Model B|ROCK5 Model B]]
| Rockchip RK3588
| AArch64
| 4× Cortex-A76 @ 2.4GHz, 4×Cortex-A55 @ 1.8 GHz
| 4/8/16 GB
| eMMC, microSD, NVMe
|-
| Radxa
| [[NixOS on ARM/Radxa ROCK5 Model A|ROCK5 Model A]]
| Rockchip RK3588s
| AArch64
| 4× Cortex-A76 @ 2.4GHz, 4×Cortex-A55 @ 1.8 GHz
| 4/8/16 GB
| eMMC, microSD, NVMe
|-
|-
| Raspberry Pi Foundation
| Raspberry Pi Foundation
Line 165: Line 395:
| Broadcom BCM2835
| Broadcom BCM2835
| ARMv6
| ARMv6
| ARM1176 @ 700 MHz
| 1 × ARM1176 @ 700 MHz
| 256 MB / 512 MB
| 256 MB / 512 MB
| SD/microSD
| SD/microSD
Line 178: Line 408:
|-
|-
| Raspberry Pi Foundation
| Raspberry Pi Foundation
| [[NixOS_on_ARM/Raspberry_Pi|Raspberry Pi 3]]
| [[NixOS_on_ARM/Raspberry_Pi 3|Raspberry Pi 3]]
| Broadcom BCM2837
| Broadcom BCM2837
| AArch64 / ARMv7
| AArch64 / ARMv7
| 4× Cortex-A53 @ 1.2 GHz
| 4× Cortex-A53 @ 1.2 GHz
| 1 GB
| 1 GB
| SD/microSD
| SD/microSD
|-
| Raspberry Pi Foundation
| [[NixOS_on_ARM/Raspberry_Pi 4|Raspberry Pi 4]]
| Broadcom BCM2711
| AArch64 / ARMv7
| 4× Cortex-A53 @ 1.5 GHz
| 1-8 GB
| microSD
|-
| Raspberry Pi Foundation
| [[NixOS_on_ARM/Raspberry_Pi 5|Raspberry Pi 5]]
| Broadcom BCM2712
| AArch64
| 4× Cortex-A76 @ 2.4 GHz
| 4-8 GB
| microSD
|-
|-
| Toshiba
| Toshiba
Line 203: Line 449:
</div>
</div>


==== Special Devices ====
==== Special Devices ==== <!--T:14-->


<!--T:15-->
It is possible to emulate an ARM platform with QEMU.
It is possible to emulate an ARM platform with QEMU.


<div class="table-responsive">
<!--T:16-->
<div class="table">
{|class="table"
{|class="table"
!width="2%"| Manufacturer
!width="2%"| Manufacturer
Line 227: Line 475:
</div>
</div>


== Installation ==
== Installation == <!--T:17-->
 
=== Getting the installer ===
 
For aarch64 it is possible to download images from Hydra ([https://hydra.nixos.org/job/nixos/release-18.09-aarch64/nixos.sd_image.aarch64-linux 18.09]) and ([https://hydra.nixos.org/job/nixos/trunk-combined/nixos.sd_image.aarch64-linux unstable]). On the page click on the latest successful built to get a download link under build products.
 
The most current installation images and miscellaneous boot files for ARMv6 and ARMv7 devices are currently built maintained and hosted by '''@dezgeg''' at http://nixos-arm.dezgeg.me/installer. '''Warning: Due to a [https://github.com/NixOS/nix/issues/2393 bug] in the version of nix supplied with these images, upgrading (e.g. via <code>nixos-rebuild switch --upgrade</code> will not work. See [https://github.com/NixOS/nixpkgs/issues/51798 here] for details, and a workaround [https://github.com/qolii/nixpkgs/releases/tag/sd-image-ARMv7-68aad73 replacement image] for armv7l'''. Generic usage is described in this page, and board-specific instructions when needed are described on their page.
 
=== Installation steps ===
 
The installation images come in two flavors: <code>sd-image-armv6l-linux.img</code> is built for the ARMv6 architecture and it comes with the Raspberry Pi kernel. sd-image-armv7l-linux.img is built for the ARMv7 architecture and comes with the mainline multiplatform ARMv7 kernel (multi_v7_defconfig). Make sure you download the correct image for your board!
 
The .img files can be directly written to a microSD/SD card (minimal recommended size: 4 GB) using dd.
 
<syntaxhighlight lang="bash">sudo dd if=sd-image-armv7l-linux.img of=/dev/sdX</syntaxhighlight>
Replace <code>/dev/sdX</code> with the path to your SD card device.
 
The base images are configured to boot up with a serial TTY ( RX/TX UART ) @ 115200 Baud. That way you not necessarily have to have a HDMI Display and keyboard.
 
Continue with [[#NixOS installation & configuration]].
 
== Binary cache ==
 
=== AArch64 ===
 
Thanks to [https://github.com/grahamc @grahamc] and [https://www.packet.com/ Packet] the [https://hydra.nixos.org/ official NixOS Hydra] builds a full set of binaries (available on https://cache.nixos.org) for the AArch64 architecture on the nixpkgs-unstable channel. Starting with the 18.03 release  [https://hydra.nixos.org/jobset/nixos/release-18.03-aarch64 the official Hydra instance will also build the stable channel] .
 
 
=== armv6l and armv7l ===
 
A binary cache, containing a [https://github.com/dezgeg/nixconfs/blob/master/packages.txt subset] of the [https://github.com/NixOS/nixpkgs-channels/tree/nixos-unstable nixos-unstable] channel, is hosted at http://nixos-arm.dezgeg.me/channel (signed with '''key''' <code>nixos-arm.dezgeg.me-1:xBaUKS3n17BZPKeyxL4JfbTqECsT+ysbDJz29kLFRW0=%</code>).
 
=== Additional caches ===
 
* An armv7l cache by '''@clever'''
** http://hydra.earthtools.ca/jobset/arm/nixpkgs-arm-unstable/channel/latest
* [https://cachix.org cachix] provides an arm binary cache ([https://discourse.nixos.org/t/armv7l-builds-on-cachix/788 Discourse post]:
** https://arm.cachix.org/ - <code>arm.cachix.org-1:fGqEJIhp5zM7hxe/Dzt9l9Ene9SY27PUyx3hT9Vvei0=</code>
 
== Build your own image ==
 
You can customize image by using the following snippet.
 
<syntaxHighlight lang=nix>
# save as sd-image.nix somewhere
{ ... }: {
  imports = [
    <nixpkgs/nixos/modules/installer/cd-dvd/sd-image-aarch64.nix>
  ];
  # put your own configuration here, for example ssh keys:
  users.extraUsers.root.openssh.authorizedKeys.keys = [
    "ssh-ed25519 AAAAC3NzaC1lZDI1.... username@tld"
  ];
}
</syntaxHighlight>
 
Then build with:
 
<syntaxHighlight lang=nix>
$ nix-build '<nixpkgs/nixos>' -A config.system.build.sdImage -I nixos-config=./sd-image.nix
</syntaxHighlight>
 
Note that this requires a machine with aarch64. You can however also build it from your laptop using an aarch64 remote builder as described in [[Distributed build]] or ask for access on the [https://github.com/nix-community/aarch64-build-box community aarch64 builder].
 
=== Crosscompiling ===
 
It is also possible to crosscompile aarch64 on your local machine or a remote builder by registering  QEMU as a binfmt wrapper for the aarch64 architecture. This wrapper uses emulation and will therefore be slower than comparable native machines. A [https://github.com/cleverca22/nixos-configs/blob/master/qemu.nix module] and and [https://github.com/cleverca22/nixos-configs/tree/master/overlays/qemu overlay] are provided by user '''@clever'''.
 
== Board-specific installation notes ==
 
Depending on the board, some additional preparation steps might be needed to make the SD card bootable on your device. All of the board-specific installation notes are now found on their respective pages.
 
== Enable UART ==
 
If you try to use UART to log on NixOS, you might hang on the line "Starting kernel ...". To enable UART, you will need to add at the end of the line that contains <code>loglevel4</code> in the file <code>/extlinux/extlinux.conf</code> the text:
{{file|/extlinux/extlinux.conf||<nowiki>
    console=ttyAMA0,115200n8
</nowiki>}}
{{file|/extlinux/extlinux.conf||<nowiki>
    console=ttyS0,115200n8
</nowiki>}}
The actual device (<code>ttyAMA0</code>, <code>ttyS0</code>, <code>ttyS1</code>) will depend on the hardware.
 
== NixOS installation & configuration ==
 
The installation image is actually a MBR partition table plus two partitions; a FAT32 /boot and a ext4 root filesystem. The image is designed such that it's possible to directly reuse the SD image's partition layout and "install" NixOS on the very same SD card by simply replacing the default configuration.nix and running nixos-rebuild. Using this installation method is strongly recommended, though if you know exactly what you're doing and how U-Boot on your board works, you can use nixos-install as usual. To help with the SD card installation method, the boot scripts on the image automatically resize the rootfs partition to fit the SD card on the first boot.
 
Use this as a template:
{{file|/etc/nixos/configuration.nix|nix|<nowiki>
{ config, pkgs, lib, ... }:
{
  # NixOS wants to enable GRUB by default
  boot.loader.grub.enable = false;
  # Enables the generation of /boot/extlinux/extlinux.conf
  boot.loader.generic-extlinux-compatible.enable = true;
  # !!! If your board is a Raspberry Pi 1, select this:
  boot.kernelPackages = pkgs.linuxPackages_rpi;
  # !!! Otherwise (even if you have a Raspberry Pi 2 or 3), pick this:
  boot.kernelPackages = pkgs.linuxPackages_latest;
 
  # !!! This is only for ARMv6 / ARMv7. Don't enable this on AArch64, cache.nixos.org works there.
  nix.binaryCaches = lib.mkForce [ "http://nixos-arm.dezgeg.me/channel" ];
  nix.binaryCachePublicKeys = [ "nixos-arm.dezgeg.me-1:xBaUKS3n17BZPKeyxL4JfbTqECsT+ysbDJz29kLFRW0=%" ];
 
  # !!! Needed for the virtual console to work on the RPi 3, as the default of 16M doesn't seem to be enough.
  # If X.org behaves weirdly (I only saw the cursor) then try increasing this to 256M.
  boot.kernelParams = ["cma=32M"];
   
  # File systems configuration for using the installer's partition layout
  fileSystems = {
    "/boot" = {
      device = "/dev/disk/by-label/NIXOS_BOOT";
      fsType = "vfat";
    };
    "/" = {
      device = "/dev/disk/by-label/NIXOS_SD";
      fsType = "ext4";
    };
  };
   
  # !!! Adding a swap file is optional, but strongly recommended!
  # swapDevices = [ { device = "/swapfile"; size = 1024; } ];
}</nowiki>}}
Note: the default configuration.nix will contain something like <code>imports = [ <nixos/modules/installer/cd-dvd/sd-image-armv7l-multiplatform.nix> ];</code> do not include that in your final installation or you will experience interesting problems. It is only for building the installation image!
 
==== First rebuild on ARMv6 and ARMv7 ====
 
To make the unsupported ARM experience slightly less painful, the config template adds <code>nixos-arm.dezgeg.me</code> as a binary cache, which contains a small subset of packages on the unstable channel (though a caution for US users: the server hosting them is physically located in Finland). Note that the binary cache isn't enabled on the prebuilt images, so enable it via the command line when building for the first time:
 
<syntaxhighlight lang="bash">nixos-rebuild switch --fast --option binary-caches http://nixos-arm.dezgeg.me/channel --option binary-cache-public-keys nixos-arm.dezgeg.me-1:xBaUKS3n17BZPKeyxL4JfbTqECsT+ysbDJz29kLFRW0=%</syntaxhighlight>
 
=== Resizing the boot partition ===
{{note|The instructions as they are were tested on the Raspberry Pi 3}}
 
{{warning|Platforms needing a secondary boot loader before the boot partition, (when using <code>dd</code> to add u-boot, MLO or SPL) will need to take in consideration where the original <code>/boot</code> partition starts.}}
 
It is possible that you run out of disk space on the boot partition after some system upgrades.
To resize the boot partition:
* (If not already done, boot once to trigger the initial partition resizing)
* Backup the files currently stored in the boot partition
* Repartition and make sure to delete and then recreate the boot partition (fat32, primary, label: <code>NIXOS_BOOT</code>)
* Copy the files from the backup back to the new boot partition
 
=== Disable use of <tt>/boot</tt> partition ===
{{note|The instructions as they are were tested on the PINE A64-LTS, though were written for the Raspberry Pi 3}}
 
The <tt>/boot</tt> partition is quite small on the NixOS on ARM images. This means that few generations can be kept, and <code>nixos-rebuild</code> can often fail due to lack of space.
 
Here are quick [https://github.com/NixOS/nixpkgs/issues/22014#issuecomment-290152982 instructions to disable use of the (small) <tt>/boot</tt> partition]. The disk used in the following example is <tt>/dev/mmcblk1</tt> which may differ depending on use of SD card and the particular device.
 
{{commands|<nowiki>
# umount /boot
</nowiki>}}
 
Comment out the fileSystems."/boot" entry from configuration.nix
 
{{commands|<nowiki>
# $EDITOR /etc/configuration.nix
</nowiki>}}
 
Use fdisk or cfdisk to remove the bootable flag from the FAT32 partition, and set it for the ext4 partition
 
{{commands|<nowiki>
# fdisk -l /dev/mmcblk1
Disk /dev/mmcblk1: 58.2 GiB, 62537072640 bytes, 122142720 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x2178694e
 
Device        Boot  Start      End  Sectors  Size Id Type
/dev/mmcblk1p1 *    16384    262143    245760  120M  b W95 FAT32
/dev/mmcblk1p2      262144 122142567 121880424 58.1G 83 Linux
 
# echo -e 'a\n1\na\n2\nw' | fdisk /dev/mmcblk1
 
Welcome to fdisk (util-linux 2.31.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
 
 
Command (m for help): Partition number (1,2, default 2):
The bootable flag on partition 1 is disabled now.
 
Command (m for help): Partition number (1,2, default 2):
The bootable flag on partition 2 is enabled now.
 
Command (m for help): The partition table has been altered.
Syncing disks.
 
 
# fdisk -l /dev/mmcblk1
Disk /dev/mmcblk1: 58.2 GiB, 62537072640 bytes, 122142720 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x2178694e
 
Device        Boot  Start      End  Sectors  Size Id Type
/dev/mmcblk1p1      16384    262143    245760  120M  b W95 FAT32
/dev/mmcblk1p2 *    262144 122142567 121880424 58.1G 83 Linux
</nowiki>}}
 
Then rebuild the system.
 
{{commands|<nowiki>
$ nixos-rebuild switch
</nowiki>}}
 
You may want to verify the presence of the <tt>/boot/extlinux/extlinux.conf</tt> file.
 
== Details about the boot process ==
 
On NixOS, all ARM boards use the popular U-Boot as the bootloader and [https://github.com/u-boot/u-boot/blob/master/doc/README.distro U-Boot's Generic Distro Configuration Concept] as the mechanism to communicate boot information (such as path to kernel zImage, initrd, DTB, command line arguments). For a quick TL;DR about the generic distro configuration support: U-Boot is scripted to scan all attached storage devices & partitions and look for a file named <code>/extlinux/extlinux.conf</code> or <code>/boot/extlinux/extlinux.conf</code> (which will be generated by NixOS, just like <code>/boot/grub/grub.cfg</code> is generated on PCs).
 
U-Boot also provides an interactive shell and the generation selection menu (just like GRUB). However, support for input or display devices varies greatly, depending on the board. Details for what the boards support in relationship to the boot process are detailed in their respective pages.
 
== Porting NixOS to new boards ==
 
=== The easiest way ===
 
Assuming upstream u-boot supports the board through a defconfig, it is possible possible to build u-boot using the cross-compiling architecture from an x86_64 host. Here's a sample use.
 
<syntaxhighlight>
# Assuming you're in a recent nixpkgs checkout
$ nix-shell \
    -I "nixpkgs=$PWD" \
    -p 'let plat = pkgsCross.aarch64-multiplatform; in plat.buildUBoot{defconfig = "orangepi_zero_plus2_defconfig"; extraMeta.platforms = ["aarch64-linux"]; BL31 = "${plat.armTrustedFirmwareAllwinner}/bl31.bin"; filesToInstall = ["u-boot-sunxi-with-spl.bin"];}'
</syntaxhighlight>
 
For armv7 and armv6 <code>pkgsCross.arm-embedded</code> should work, this is available in the unstable channel (19.03 and following) by setting <code>-I "nixpkgs=/path/to/new-nixpkgs-checkout</code>.


This should build whatever is needed for, and then build u-boot for the desired defconfig, then open a shell with the build in <code>$buildInputs</code>. Do note that this particular invocation may need more changes than only the defconfig if built for other than allwinner boards.
<!--T:18-->
{{main|NixOS_on_ARM/Installation}}


Here's an example command, for allwinner boards, on how to write to an SD card.
== Initial configuration == <!--T:19-->


<syntaxhighlight>
<!--T:20-->
$ sudo dd if=$buildInputs/u-boot-sunxi-with-spl.bin of=/dev/sdX bs=1024 seek=8
{{main|NixOS_on_ARM/Initial_Configuration}}
</syntaxhighlight>


=== The easy way ===
== Troubleshooting == <!--T:21-->


''(if you're lucky)''
<!--T:22-->
=== Hanging at <code>Starting kernel ...</code> ===
When booting a NixOS system, it may look like it is hung at <code>Starting kernel ...</code>.


If your board is an ARMv7 board supported by multi_v7_defconfig and you have access to U-Boot on the board, getting <code>sd-image-armv7l-linux.img</code> to boot is the easiest option:
<!--T:23-->
It is unlikely to be hung at this part. This is the last message printed by U-Boot. U-Boot prints to both the display and the console at once.


* If you're lucky and your U-Boot build comes with the extlinux.conf support built in, the image boots out-of-the-box. This is the case for all (upstream) Allwinner and Tegra U-Boots, for instance.
<!--T:24-->
* Otherwise, you can get the boot information (path to kernel zImage, initrd, DTB, command line arguments) by extracting <code>extlinux.conf</code> from the boot partition of the image, and then attempt to boot it via the U-Boot shell, or some other mechanism that your board's distro uses (e.g. <code>uEnv.txt</code>).
To view the kernel messages and boot output, the <code>stdout</code>of the kernel needs to be configured appropriately.


==== Building u-boot from your NixOS PC ====
<!--T:25-->
The kernel's <code>stdout</code> will differ depending on semantics.


Assuming
<!--T:26-->
* When there are no valid <code>console=</code> kernel command-line arguments, it will default to the <code>/chosen/stdout-path</code> device tree property. (Generally a serial console.)
* When valid <code>console=</code> parameters are present, the kernel picks the leftmost valid one as <code>stdout</code>.


* Your board is supported upstream by u-boot or there is a recent enough fork with <code>extlinux.conf</code> support.
<!--T:27-->
* You do not have nix setup on an ARM device
In other words, the solution may be to enable the appropriate <code>console=</code> parameters according to your hardware configuration and system.
* Your nix isn't setup for cross-compilation


It is still possible to build u-boot using tools provided by NixOS.
<!--T:28-->
* For the display, add <code>console=tty0</code>.
* For a serial console, refer to the target device configuration.


In the following terminal session, replace <code>orangepi_pc_defconfig</code> with the appropriate board [http://git.denx.de/?p=u-boot.git;a=tree;f=configs;hb=HEAD from the configs folder] of u-boot.
=== Details about the boot process === <!--T:29-->


{{Commands|<nowiki>
<!--T:30-->
$ nix-shell -E 'with import <nixpkgs> {}; stdenv.mkDerivation { name = "arm-shell"; buildInputs = [git gnumake gcc gcc-arm-embedded dtc]; }'
NixOS can also be booted through [[NixOS on ARM/UEFI|UEFI]] on ARM. The semantics are generally the same as on other architectures. Do note that the common use of Device Tree instead of ACPI in consumer-class hardware [[NixOS_on_ARM/UEFI#Device_Trees|''may'' make this a bit more awkward]].
$ git clone git://git.denx.de/u-boot.git
$ cd u-boot
# We're checking out a version from before the use of `binman`.
# The dtc package is 1.4.2, which does not include `pylibftd`.
# Furthermore, I do not know how to package the library so it would be
# available in the python interpreter, making binman happy.
$ git checkout v2017.03
$ make -j4 CROSS_COMPILE=arm-none-eabi- orangepi_pc_defconfig
$ make -j4 CROSS_COMPILE=arm-none-eabi-
</nowiki>}}


The name of the final file will change depending on the board. For this specific build, and most Allwinner builds, the file will be named <code>u-boot-sunxi-with-spl.bin</code>.
<!--T:31-->
Otherwise, in SBC-class hardware, it is common that boards are generally expected to use U-Boot as the platform firmware and bootloader. See the section about [[U-Boot#Using NixOS with U-Boot|using NixOS with U-Boot]].


You can flash this file to boot device with
== Binary caches == <!--T:32-->


{{Commands|<nowiki>
=== AArch64 === <!--T:33-->
dd if=u-boot-sunxi-with-spl.bin of=/dev/sdX bs=1024 seek=8
</nowiki>}}


Note: This mailing list contains a patch which may help some builds: https://lists.denx.de/pipermail/u-boot/2016-December/275664.html
<!--T:34-->
The [https://hydra.nixos.org/ official NixOS Hydra] instance builds a full set of binaries (available on https://cache.nixos.org) for the AArch64 architecture on the nixpkgs-unstable and stable channels.


=== The hard way ===
=== armv6l and armv7l === <!--T:35-->


Alternatively/if all else fails, you can do it the hard way and bootstrap NixOS from an existing ARM Linux installation.
<!--T:36-->
Some '''''users''''' have provided best effort caches in the past for 32 bit ARM, but none are currently available.


=== Contributing new boards to nixpkgs ===
== Getting Support == <!--T:37-->


* Add a new derivation for your board's U-Boot configuration, see for example ubootJetsonTK1 in {{Nixpkgs Link|short=all-packages.nix|pkgs/top-level/all-packages.nix}}.
<!--T:38-->
* If your board's U-Boot configuration doesn't use the <code>extlinux.conf</code> format by default, create a patch to enable it. Some C hacking skills & U-Boot knowledge might be required. For some pointers, see this patch to enable it on the Versatile Express.
There is a dedicated room for the upstream NixOS effort on Matrix,
* Make a pull request, also containing the board-specific instructions. Ping '''@dezgeg''' for review and for building & hosting the U-Boots at http://nixos-arm.dezgeg.me/installer.
[https://matrix.to/#/#nixos-on-arm:nixos.org #nixos-on-arm:nixos.org].


== Support ==
<!--T:39-->
Don't hesitate to ask questions. Note that reply times may vary greatly, depending on the provided information.


All ARM platforms are experimental. Only AArch64 platforms are currently being worked on for eventual support from NixOS.
== Resources == <!--T:40-->


There is a dedicated IRC Channel for the upstream effort on [irc://irc.freenode.net/nixos-aarch64 freenode, #nixos-aarch64].
=== See also === <!--T:41-->


== Resources ==
<!--T:42-->
* [[U-Boot]], as it is often paired with SBC-class hardware.
* [https://mobile.nixos.org/ Mobile NixOS], which provides enhanced semantic around some non-standard boot semantics.


=== Subpages ===
=== Subpages === <!--T:43-->


<!--T:44-->
The following is a list of all sub-pages of the ''NixOS on ARM'' topic.
The following is a list of all sub-pages of the ''NixOS on ARM'' topic.


<!--T:45-->
{{Special:PrefixIndex/{{FULLPAGENAME}}/ |hideredirects=1 |stripprefix=1}}
{{Special:PrefixIndex/{{FULLPAGENAME}}/ |hideredirects=1 |stripprefix=1}}
</translate>

Latest revision as of 03:15, 10 October 2024

NixOS supports 64-bit ARM.

The support level for ARM overall varies depending on the architecture and the specific ecosystems and boards.

The way the ARM integration is built into NixOS is by making generic builds the first-class citizens. This means that as soon as there is upstream support for the board in the kernel and platform firmware, NixOS should work once those are updated.

It is still possible, when needed, to build and use a customized platform firmware and kernel for specific boards[reference needed].

At this moment in time (early 2024) only AArch64 has full support upstream. With that said, neither armv6l or armv7l are being ignored, fixes are worked on and approved as needed. What's missing is support and builds being maintained in binary form. At the time of writing, no publicly available caches for armv6l or armv7l are available.

For images links, including UEFI install, skip to the Installation page.

Supported devices

Table legend:

Upstream (NixOS) supported devices

NixOS has support for these boards using AArch64 architecture on the nixpkgs-unstable and stable channel.

Support for those board assumes as much is supported as Mainline Linux supports.

Manufacturer Board SoC ISA CPU RAM Storage
Raspberry Pi Foundation Raspberry Pi 3 Broadcom BCM2837 AArch64 / ARMv7 4× Cortex-A53 @ 1.2 - 1.4 GHz 1 GB SD/microSD
Raspberry Pi Foundation Raspberry Pi 4 Broadcom BCM2711 AArch64 / ARMv7 4× Cortex-A72 @ 1.5 - 1.8 GHz 1-8 GB microSD, eMMC

Community supported devices

These boards are not routinely verified as working.

The baseline support level expected is “Just as much as mainline Linux and U-Boot supports them”, except if specified otherwise.

Manufacturer Board SoC ISA CPU RAM Storage
Apple Apple Silicon Macs M1/M1 Pro/M1 Max AArch64 NVMe
ASUS Tinker Board Rockchip RK3288 ARMv7 4× Cortex-A17 2 GB microSD
Banana Pi Banana Pi Allwinner A20 ARMv7 2× Cortex-A7 1 GB SD, SATA
Banana Pi M64 Banana Pi M64 Allwinner A64 AArch64 4× Cortex-A53 2 GB microSD, 8GB eMMc
Banana Pi BPI-M5 Banana Pi BPI-M5 Amlogic S905X3 AArch64 4× Cortex-A55 4 GB LPDDR4 microSD, 16G eMMC
BeagleBoard.org BeagleBone Black TI AM335x (src) ARMv7 1× Cortex-A8 @ 1 GHz 512 MB 4 GB eMMC, microSD
Firefly AIO-3399C Rockchip RK3399 AArch64 2× Cortex-A72 @ 2.0 GHz, 4× Cortex-A53 @ 1.5 Ghz 2/4 GB 8/16 GB eMMC, microSD
FriendlyElec NanoPC-T4 Rockchip RK3399 AArch64 2× Cortex-A72 @ 2.0 GHz, 4× Cortex-A53 @ 1.5 Ghz 4 GB 16 GB eMMC, microSD, NVMe
FriendlyElec NanoPi-M4 Rockchip RK3399 AArch64 2× Cortex-A72 @ 2.0 GHz, 4× Cortex-A53 @ 1.5 Ghz 4 GB optional eMMC, microSD
FriendlyElec NanoPi-R6C Rockchip RK3588S AArch64 4× ARM Cortex-A76 @ 2.4 GHz, 4× Cortex-A55 @ 1.8 Ghz 4 GB / 8 GB optional eMMC, microSD, NVMe
Hardkernel ODROID-HC1 & ODROID-HC2 Samsung Exynos 5422 ARMv7 4× Cortex-A15 @ 2GHz, 4× Cortex-A7 @ 1.4GHz 2 GB microSD
Hardkernel ODROID-C2 Amlogic S905 AArch64 4× Cortex-A53 @ 1.5GHz 2 GB eMMC, microSD
Hardkernel ODROID-HC4 Amlogic S905X3 AArch64 4× Cortex-A55 @ 1.8GHz 4 GB microSD, SATA
Kosagi Kosagi Novena i.MX6 ARMv7 4× Cortex-A9 @ 1.2 GHz 4 GB microSD, SATA
Libre Computer ROC-RK3399-PC Rockchip RK3399 AArch64 2× Cortex-A72 @ 2.0 GHz, 4× Cortex-A53 @ 1.5 Ghz 4 GB eMMC, microSD, NVMe
Libre Computer ROC-RK3328-CC Rockchip RK3328 AArch64 4× Cortex-A53 @ 1.4GHz 4 GB eMMC, microSD
Libre Computer AML-S905X-CC-V2 Amlogic S905X AArch64 4× Cortex-A53 @ 1.512 GHz 1/2GB eMMC, microSD
Linksprite pcDuino3 Nano Allwinner A20 ARMv7 2× Cortex-A7 @ 1 GHz 1 GB 4 GB NAND, microSD, SATA
NVIDIA Jetson TK1 Tegra K1/T124 ARMv7 4× Cortex-A15 @ 2.3 GHz 2 GB 16 GB eMMC, SD, SATA
NXP i.MX 8M Plus EVK i.MX 8M Plus AArch64 4× Cortex-A53 @ 1.8 Ghz 6 GB 32 GB eMMC, microSD
NXP i.MX 8M Quad EVK i.MX 8M Quad AArch64 4× Cortex-A53 @ 1.5 Ghz + 1× Cortex-M4 3 GB 16 GB eMMC, microSD
OLIMEX Teres-A64 AllWinner A64 AArch64 4× Cortex-A53 @ 1.1 GHz 2GB 16 GB eMMC, microSD
Orange Pi Orange Pi One Allwinner H3 ARMv7 4× Cortex-A7 @ 1.2 GHz 512 MB microSD
Orange Pi Orange Pi PC Allwinner H3 ARMv7 4× Cortex-A7 @ 1.6 GHz 1 GB SD/microSD
Orange Pi Orange Pi Zero Plus2 (H5) Allwinner H5 AArch64 4× Cortex-A53 @ 1.2 GHz 1 GB SD/microSD + 8GB eMMC
Orange Pi Orange Pi Zero2 (H616) Allwinner H616 AArch64 4× Cortex-A53 @ 1.2 GHz 1 GB SD/microSD + 2MB SPI Flash
Orange Pi Orange Pi R1 Plus LTS Rockchip RK3328 AArch64 4× Cortex-A53 @ 1.5 GHz 1 GB microSD
Orange Pi Orange Pi 5 Rockchip RK3588s AArch64 4× Cortex-A76 @ 2.4GHz, 4×Cortex-A55 @ 1.8 GHz 4/8/16 GB microSD, NVMe
Orange Pi Orange Pi 5 Plus Rockchip RK3588 AArch64 4× Cortex-A76 @ 2.4GHz, 4×Cortex-A55 @ 1.8 GHz 4/8/16 GB eMMC, microSD, NVMe
PINE64 PINE A64-LTS Allwinner R18 AArch64 4× Cortex-A53 @ ? GHz 2 GB microSD & eMMC
PINE64 Pinebook Allwinner A64 AArch64 4× Cortex-A53 @ ? Ghz 2 GB microSD & eMMC
PINE64 Pinebook Pro Rockchip RK3399 AArch64 2× Cortex-A72 @ 2.0 GHz, 4× Cortex-A53 @ 1.5 Ghz 4 GB microSD & eMMC
PINE64 ROCK64 Rockchip RK3328 AArch64 4× Cortex-A53 @ 1.5 GHz 1/2/4 GB microSD/eMMC
PINE64 ROCKPro64 Rockchip RK3399 AArch64 2× Cortex-A72 @ 2.0 GHz, 4× Cortex-A53 @ 1.5 Ghz 2/4 GB microSD/eMMC
Clockworkpi uConsole A06 Rockchip RK3399 AArch64 2× Cortex-A72 @ 2.0 GHz, 4× Cortex-A53 @ 1.5 Ghz 4 GB microSD
Radxa ROCK 4 Rockchip RK3399 AArch64 2× Cortex-A72, 4×Cortex-A53 2/4 GB eMMC, microSD, NVMe via expansion board
Radxa ROCK5 Model B Rockchip RK3588 AArch64 4× Cortex-A76 @ 2.4GHz, 4×Cortex-A55 @ 1.8 GHz 4/8/16 GB eMMC, microSD, NVMe
Radxa ROCK5 Model A Rockchip RK3588s AArch64 4× Cortex-A76 @ 2.4GHz, 4×Cortex-A55 @ 1.8 GHz 4/8/16 GB eMMC, microSD, NVMe
Raspberry Pi Foundation Raspberry Pi Broadcom BCM2835 ARMv6 1 × ARM1176 @ 700 MHz 256 MB / 512 MB SD/microSD
Raspberry Pi Foundation Raspberry Pi 2 Broadcom BCM2836 ARMv7 4× Cortex-A7 @ 900 MHz 1 GB SD/microSD
Raspberry Pi Foundation Raspberry Pi 3 Broadcom BCM2837 AArch64 / ARMv7 4× Cortex-A53 @ 1.2 GHz 1 GB SD/microSD
Raspberry Pi Foundation Raspberry Pi 4 Broadcom BCM2711 AArch64 / ARMv7 4× Cortex-A53 @ 1.5 GHz 1-8 GB microSD
Raspberry Pi Foundation Raspberry Pi 5 Broadcom BCM2712 AArch64 4× Cortex-A76 @ 2.4 GHz 4-8 GB microSD
Toshiba AC100 (mini laptop) Tegra 2 250 (T20) ARMv7 2× Cortex-A9 @ 1 GHz 512 MB 8­­–32 GB eMMC, SD
Wandboard Wandboard Solo/Dual/Quad Freescale i.MX6 ARMv7 1×/2×/4× Cortex-A9 @ 1000 MHz 512 MB / 1 GB / 2 GB microSD, SATA

Special Devices

It is possible to emulate an ARM platform with QEMU.

Manufacturer Board SoC ISA CPU RAM Storage
QEMU QEMU ARMv7 up to 8 up to 2 GB Anything QEMU supports

Installation

Initial configuration

Troubleshooting

Hanging at Starting kernel ...

When booting a NixOS system, it may look like it is hung at Starting kernel ....

It is unlikely to be hung at this part. This is the last message printed by U-Boot. U-Boot prints to both the display and the console at once.

To view the kernel messages and boot output, the “stdout” of the kernel needs to be configured appropriately.

The kernel's stdout will differ depending on semantics.

  • When there are no valid console= kernel command-line arguments, it will default to the /chosen/stdout-path device tree property. (Generally a serial console.)
  • When valid console= parameters are present, the kernel picks the leftmost valid one as stdout.

In other words, the solution may be to enable the appropriate console= parameters according to your hardware configuration and system.

  • For the display, add console=tty0.
  • For a serial console, refer to the target device configuration.

Details about the boot process

NixOS can also be booted through UEFI on ARM. The semantics are generally the same as on other architectures. Do note that the common use of Device Tree instead of ACPI in consumer-class hardware may make this a bit more awkward.

Otherwise, in SBC-class hardware, it is common that boards are generally expected to use U-Boot as the platform firmware and bootloader. See the section about using NixOS with U-Boot.

Binary caches

AArch64

The official NixOS Hydra instance builds a full set of binaries (available on https://cache.nixos.org) for the AArch64 architecture on the nixpkgs-unstable and stable channels.

armv6l and armv7l

Some users have provided best effort caches in the past for 32 bit ARM, but none are currently available.

Getting Support

There is a dedicated room for the upstream NixOS effort on Matrix, #nixos-on-arm:nixos.org.

Don't hesitate to ask questions. Note that reply times may vary greatly, depending on the provided information.

Resources

See also

  • U-Boot, as it is often paired with SBC-class hardware.
  • Mobile NixOS, which provides enhanced semantic around some non-standard boot semantics.

Subpages

The following is a list of all sub-pages of the NixOS on ARM topic.